Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Front Vet Sci ; 11: 1413420, 2024.
Article En | MEDLINE | ID: mdl-38919159

Canine distemper virus (CDV) is a highly contagious and potentially lethal virus that affects dogs and other members of the Canidae family, including wolves, foxes, and coyotes. Here, we present a fluorescent lateral flow immunoassay (FLFA) platform for the detection of CDV, which utilizes fluorescent microspheres - fusion protein monoclonal antibody (mAb)-labeled monoclonal antibody. The assay detected CDV within 5 min, with a detection limit threshold of 3 × 102 TCID50/mL. Notably, the assay demonstrated no cross-reactivity with canine parvovirus, canine coronavirus, canine adenovirus, feline calicivirus, feline herpesvirus, or feline parvovirus. Field and clinical applicability of the assay was evaluated using 63 field samples, including 30 canine fecal samples, 18 swab samples, and 15 blood samples. The coincidence rate between the detection results of clinical samples obtained through FLFA and reverse transcription polymerase chain reaction (RT-PCR) was 96.83%. Thus, this assay offers a significant advancement for the rapid diagnosis of CDV at the point of care.

2.
ACS Omega ; 9(19): 21071-21081, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764646

The study on the effect of fatty acid saturation on low-rank coal (LRC) flotation is still limited. In this investigation, density functional theory (DFT) combined with Zeta potential and Fourier transform infrared spectroscopy (FTIR) was used to study the mechanism of intermolecular weak interaction at the LRC-water interface of fatty acids (decanoic acid (DA), undecylenic acid (UA), and phenyl propionic acid (PA)) with different saturations and different dodecane (D) composition hydrocarbon oil-fatty acid mixed collectors (D-DA, D-UA, D-PA). The findings demonstrated that the hydrogen bond interaction and electrostatic interaction between the UA/PA with unsaturated bonded carbon chains and the LRC molecular fragments/water molecules were stronger than DA without a saturated bond carbon chain, and UA/PA strengthened its interaction with water molecules on the whole, even PA molecules would preferentially interact with water molecules. The unsaturated bond had a minimal impact on the adsorption of the LRC hydrophobic site, and the strength of the hydrogen bond between the mixed collector and LRC is D-DA > D-UA > D-PA. In the actual flotation process, the strong hydrogen bonding and electrostatic interaction between UA/PA and water molecules weaken the collection performance of the mixed collector D-UA/D-PA for LRC, which also confirmed the research results of DFT, FTIR, and Zeta.

4.
Chemosphere ; 359: 142295, 2024 Jul.
Article En | MEDLINE | ID: mdl-38729445

In this study, high-ash coal slime-based mineral soil amendment (MSA) was prepared via the hydrothermal method using high-ash coal slime as raw material, supplemented with activator calcium oxide and additive KOH solution. After hydrothermal treatment at 230 °C for 5 h, the original crystalline phase (quartz and kaolinite) of the high-ash slime was completely transformed into hydrotalcite zeolite, tobermorite, and silicate of potassium aluminosilicate, which has the largest specific surface area. The adsorption of Pb2+ and Cd2+ was adherent to the kinetic equation of secondary adsorption and Freundlich models, and the removal of Pb2+ and Cd2+ reached up to 362.58 mg g-1 and 64.67 mg g-1. The successive releases of SiO2 and CaO from MSA conformed to the Elovich equation, whereas the releases of SiO2 in Cd-containing environments and CaO in Pb- and Cd-containing environments more closely conformed to the power function; the releases of K2O all conformed to the first-order kinetic equation. The presence of Pb2+ and Cd2+ in the environment promotes the release of potassium and calcium elements with MSA's ion-exchange ability, and attenuates the release of silicon elements. Combining Pb2+ and Cd2+ with silicon resulted in the intolerant precipitation of 3PbO·2SiO2 and Cd2SiO4. The mineral precipitation mechanism is the most important mechanism of MSA in immobilizing heavy metals, accounting for 72.7%-80.5% of the total adsorption. Further contaminated soil immobilization experiments also showed that the application of MSA significantly reduced the bioavailability of soil heavy metals. When the MSA addition amount was 1.6%, the residual state increased by 63.58%. In conclusion, preparing MSA may effectively utilize coal-based solid waste with high added value.


Metals, Heavy , Soil Pollutants , Soil , Adsorption , Soil Pollutants/chemistry , Soil Pollutants/analysis , Metals, Heavy/chemistry , Metals, Heavy/analysis , Soil/chemistry , Kinetics , Coal , Coal Ash/chemistry , Cadmium/chemistry , Lead/chemistry , Environmental Restoration and Remediation/methods , Oxides/chemistry , Calcium Compounds/chemistry
5.
Polymers (Basel) ; 16(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675049

The preparation of an environmentally friendly and efficient flocculant for solid-liquid separation in industrial wastewater is highly important. In this study, a novel cationic flocculant (AL-g-PAMA) was synthesized by a thermal initiation method using alkali lignin (AL) as the main chain and acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as the grafted side chains. The structure, thermal stability, and surface morphology of the copolymers were investigated by various characterization methods. The results indicated the successful synthesis of AL-g-PAMA. AL-g-PAMA was applied to improve solid-liquid separation in kaolin suspensions. The results showed that AL-g-PAMA had excellent flocculation-sedimentation and dewatering efficiency. When the dosage of AL-g-PAMA #5 was 600.0 g/t(s), the thickness of the compressed layer was 2.2 cm, the floc settling velocity was 24.1 cm/min, and the transmittance of the supernatant was 84.0%. The moisture content of the filter cake decreased from 55.0% to 43.4% after treatment with AL-g-PAMA #5. The results of zeta potential and focused beam reflectance measurement (FBRM) analysis indicated that bridging and electroneutralization were the main flocculation mechanisms. Therefore, this study extends the potential for using lignin as a bioflocculant and provides a feasible approach to efficiently purify high-turbidity wastewater.

6.
Molecules ; 29(5)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38474546

In this work, the assembly behavior and structure of a compound collector with different carboxyl group positions at the low-rank coal (LRC)-water interface were investigated through coarse-grained molecular dynamics simulation (CGMD) combined with sum-frequency vibration spectroscopy (SFG). The choice of compound collector was dodecane +decanoic acid (D-DA) and dodecane +2-butyl octanoic acid (D-BA). CGMD results showed that the carboxyl group at the carbon chain's middle can better control the assembly process between carboxylic acid and D molecules. SFG research found that the carboxyl group at the carbon chain's termination had a greater impact on the displacement of the methyl/methylene symmetric stretching vibration peak, while the carboxyl group at the carbon chain's middle had a greater impact on the displacement of the methyl/methylene asymmetric stretching vibration peak. The spatial angle calculation results revealed that the methyl group's orientation angle in the D-BA molecule was smaller and the carboxyl group's orientation angle in the BA molecule was bigger, indicating that D-BA spread more flatly on the LRC surface than D-DA. This meant that the assembled structure had a larger effective adsorption area on the LRC surface. The flotation studies also verified that the assembly behavior and structure of D-BA with the carboxyl group at the carbon chain's middle at the LRC-water interface were more conducive to the improvement of flotation efficiency. The study of interface assembly behavior and structure by CGMD combined with SFG is crucial for the creation of effective compound collectors.

7.
J Environ Manage ; 354: 120342, 2024 Mar.
Article En | MEDLINE | ID: mdl-38382431

In this work, ultraviolet irradiation was employed to assist in the preparation of a novel photocatalyst composite in the form of carbon dots/zeolite-4A/TiO2, using coal tailings as the source of silicon-aluminum and carbon. The composite was designed for the degradation of methylene blue under 500 W of UV light irradiation. Zeolite-4A was used as a support for the well-dispersed carbon dots and TiO2 nanoparticles. The as-prepared composites were subjected to thorough characterization, confirming the successful formation of zeolite-4A with a cube structure, along with the loading of TiO2 and coal-based CDs in the composites. The experimental results demonstrated that the UV-CZTs nanocomposites exhibited a remarkable removal efficiency of 90.63% within 90 min for MB. The corresponding rate constant was exceptionally high at 0.0331 min-1, surpassing that of the Dark-CZTs and pure TiO2. This significant enhancement was possibly due to the synergistic effect of adsorption photocatalysis of the UV-CZTs, combined with the excellent electron-accepting capabilities of the coal-based CDs, which led to highly improved charge separation. An investigation of the spent photocatalyst's recyclability revealed that it retained a remarkable 82.94% MB removal efficiency after five consecutive cycles, signifying the stability of the composite. Trapping experiments also elucidated the primary reactive species responsible for MB degradation, which were identified as photo-generated holes and ⸱O2- species. By this process, the hydroxyl radicals generated in the system successfully promoted the transformation of coal tailings to coal-based zeolite and coal-based CDs. Coal-based zeolite served as an excellent carrier of titanium dioxide, which improved its dispersibility. The inhibition of e--h+ recombination of titanium dioxide by introducing coal-based CDs improved the photocatalytic ability of titanium dioxide. Through this study, coal tailings, as a coal processing waste, were transformed into high-value materials, and relevant photocatalytic composite materials could be prepared with broad application prospects.


Ultraviolet Rays , Zeolites , Coloring Agents , Zeolites/chemistry , Titanium/chemistry , Coal , Carbon , Catalysis
8.
J Multidiscip Healthc ; 17: 21-28, 2024.
Article En | MEDLINE | ID: mdl-38196937

Objective: To analyze the mental health and erectile function status of men using sperm donor during pregnancy after ICSI failure in severe oligoasthenospermia and to provide reference for clinical implementation of more targeted psychological intervention and nursing for this group. Methods: A total of 410 sterile men who received assisted pregnancy treatment in our hospital from December 2020 to December 2022 and met the inclusion and exclusion criteria were collected as the study subjects. Among them, 68 patients with severe oligoasthenospermia who used donor assisted pregnancy after ICSI failure were used as the study group. Sixty-eight patients with severe oligoasthenospermia who continued to receive ICSI assisted pregnancy were matched by propensity score 1:1 as control group. General data questionnaire, self-rating Anxiety Scale (SAS), self-rating Depression Scale (SDS), Chinese version of perceived Stress Scale (CPSS) and International Erectile Function Index Rating Scale (IIEF-5) were used to conduct a cross-sectional investigation to compare the mental health and erectile function status of the two groups. Results: There were statistical differences in age and occupational status between the two groups before PSM (P < 0.05), but there was no statistical significance in social demographic data between the two groups after matching (P > 0.05). The incidence of anxiety, depression, stress and erectile dysfunction (ED) in the study group was higher than that in the control group, and there were statistical differences between the two groups (P < 0.05). Conclusion: The use of donor sperm to assist pregnancy has a great impact on the mental health and erectile function of infertile men. Medical personnel should pay attention to the mental health and erectile function of these men, and formulate targeted measures to help these patients actively cope with infertility, so as to improve the life and marriage quality of this group and improve their mental health status.

10.
Nat Commun ; 15(1): 386, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195694

Both lytic and apoptotic cell death remove senescent and damaged cells in living organisms. However, they elicit contrasting pro- and anti-inflammatory responses, respectively. The precise cellular mechanism that governs the choice between these two modes of death remains incompletely understood. Here we identify Gasdermin E (GSDME) as a master switch for neutrophil lytic pyroptotic death. The tightly regulated GSDME cleavage and activation in aging neutrophils are mediated by proteinase-3 and caspase-3, leading to pyroptosis. GSDME deficiency does not alter neutrophil overall survival rate; instead, it specifically precludes pyroptosis and skews neutrophil death towards apoptosis, thereby attenuating inflammatory responses due to augmented efferocytosis of apoptotic neutrophils by macrophages. In a clinically relevant acid-aspiration-induced lung injury model, neutrophil-specific deletion of GSDME reduces pulmonary inflammation, facilitates inflammation resolution, and alleviates lung injury. Thus, by controlling the mode of neutrophil death, GSDME dictates host inflammatory outcomes, providing a potential therapeutic target for infectious and inflammatory diseases.


Gasdermins , Lung Injury , Humans , Neutrophils , Apoptosis , Pyroptosis
11.
Clin Infect Dis ; 78(3): 518-525, 2024 03 20.
Article En | MEDLINE | ID: mdl-37795577

BACKGROUND: Several studies have suggested that short-course antibiotic therapy was effective in Pseudomonas aeruginosa (PA) bloodstream infections (BSI) in immunocompetent patients. But similar studies in patients with hematological malignancies were rare. METHODS: This cohort study included onco-hematology patients at 2 hematology centers in China. Inverse probability of treatment weighting was used to balance the confounding factors. Multivariate regression model was used to evaluate the effect of short-course antibiotic therapy on clinical outcomes. RESULTS: In total, 434 patients met eligibility criteria (short-course, 7-11 days, n = 229; prolonged, 12-21 days, n = 205). In the weighted cohort, the univariate and multivariate analysis indicated that short course antibiotic therapy had similar outcomes to the prolonged course. The recurrent PA infection at any site or mortality within 30 days of completing therapy occurred in 8 (3.9%) patients in the short-course group and in 10 (4.9%) in the prolonged-course group (P = .979). The recurrent infection within 90 days occurred in 20 (9.8%) patients in the short-course group and in 13 (6.3%) patients in the prolonged-course group (P = .139), and the recurrent fever within 7 days occurred in 17 (8.3%) patients in the short-course group and in 15 (7.4%) in the prolonged-course group (P = .957). On average, patients who received short-course antibiotic therapy spent 3.3 fewer days in the hospital (P < .001). CONCLUSIONS: In the study, short-course therapy was non-inferior to prolonged-course therapy in terms of clinical outcomes. However, due to its biases and limitations, further prospective randomized controlled trials are needed to generalize our findings.


Bacteremia , Febrile Neutropenia , Hematology , Pseudomonas Infections , Sepsis , Humans , Pseudomonas aeruginosa , Cohort Studies , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/drug therapy , Febrile Neutropenia/complications , Febrile Neutropenia/drug therapy , Sepsis/drug therapy , Bacteremia/drug therapy
12.
Environ Sci Pollut Res Int ; 30(44): 99652-99665, 2023 Sep.
Article En | MEDLINE | ID: mdl-37615911

High-ash coal slime is difficult to utilise as a boiler fuel, and its accumulation results in environmental pollution. In this study, we describe a new method for the preparation of high-ash coal slime silica compound fertiliser (HASF) using CaO-KOH mixed hydrothermal method to optimize the utilization of this industrial waste and relieve the pressure on the fertiliser industry. The coal slime (D0) used in this study and its dry basis ash content by 1 mol/L and 4 mol/L sulfuric acid pre-activation (D1, D4) were greater than 85%. The effective silicon content of D0, D1, and D4 silica compound fertilisers reached 30.24%, 31.24%, and 17.35%, respectively, and the sums of effective silica-calcium-potassium oxides were 57.28%, 58.87%, and 48.16%, respectively, under the optimal reaction conditions of 230 °C, 15 h, and 1 mol/L KOH, which met the market requirements, as determined using single-factor experiments. We used XRD, FTIR, and SEM-EDS analysis techniques to demonstrate that tobermorite and leucite were the main mineral phases of the compound fertiliser, and activated coal slime D4, which contains only quartz single crystals, required more demanding reaction conditions in the synthesis reaction. Subsequently, the cumulative release pattern of HASF silica was well described by the power function equation via repeated extraction and dissolution experiments, with the dissolution rate following D4 > D1 ≈ D0. Furthermore, 4 mol/L sulfuric acid pre-activation resulted in the enrichment of HASF combined with organic matter and increased the slow-release rate of HASF silica. Thus, the synthesized HASF could have potential application prospects in soil improvement and fertilisation.


Coal Ash , Fertilizers , Coal Ash/chemistry , Silicon/analysis , Coal/analysis , Industrial Waste/analysis , Silicon Dioxide
13.
Molecules ; 28(14)2023 Jul 23.
Article En | MEDLINE | ID: mdl-37513465

High-ash coal, also known as low-grade coal, has becomes a viable alternative in recent years to high-quality coal because available resources have become increasingly scarce due to extensive mining activity. This work aims to provide a comprehensive understanding of the structural characteristics of high-ash coal and construct a plausible molecular structure to elucidate its chemical reactivity in future applications. Its properties were investigated using Solid-state 13C nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy analysis (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The molecular structure was constructed and validated using Material Studio, LAMMPS Software Package, and MATLAB program. The characterization results revealed that high-ash coal contains 72.15% aromatic carbon, significantly surpassing the percentage of aliphatic carbon (27.85%). The ratio of bridgehead carbon to peripheral aromatic carbon was calculated as 0.67, indicating that the pentacene is the main carbon skeleton form in the high-ash coal structure. Furthermore, oxygen-containing functional groups presented as C=O/O-C-O, C-O, and COO- within the structure along with pyridine and pyrrolic structures. Consequently, the molecular structure comprises pentacene with aliphatic carbon chains, such as methylene, that connect the benzene rings and form a three-dimensional network. The results of a simulated IR spectrum and contact angle simulation aligned with the experimental results, validating the molecular structure of high-ash coal. The chemical formula for the high-ash coal model was determined as C203H189N7O61S with a molecular weight of 3734.79.

14.
Molecules ; 28(11)2023 May 29.
Article En | MEDLINE | ID: mdl-37298891

This study investigates the interaction between montmorillonite and polyacrylamide (PAM) with different ionic types using quartz crystal microbalance with dissipation monitoring (QCM-D) and molecular dynamics (MD) simulations. The goal was to understand the effect of ionicity and ionic type on polymer deposition on montmorillonite surfaces. The results of the QCM-D analysis showed that a decrease in pH led to an increase in the adsorption of montmorillonite on the alumina surface. The ranking of adsorption mass on alumina and pre-adsorbed montmorillonite alumina surfaces was found to be cationic polyacrylamide (CPAM) > polyacrylamide (NPAM) > anionic polyacrylamide (APAM). The study also found that CPAM had the strongest bridging effect on montmorillonite nanoparticles, followed by NPAM, while APAM had a negligible bridging effect. The MD simulations showed that ionicity had a significant influence on the adsorption of polyacrylamides. The cationic functional group N(CH3)3+ had the strongest attraction interaction with the montmorillonite surface, followed by the hydrogen bonding interaction of the amide functional group CONH2, and the anionic functional group COO- had a repulsive interaction. The results suggest that at high ionicity levels, CPAM can be adsorbed on the montmorillonite surface, while at low ionicity levels, APAM may still be adsorbed with a strong coordination trend.


Bentonite , Quartz Crystal Microbalance Techniques , Adsorption , Quartz Crystal Microbalance Techniques/methods , Molecular Dynamics Simulation , Ions , Aluminum Oxide , Surface Properties
15.
J Vis Exp ; (195)2023 05 12.
Article En | MEDLINE | ID: mdl-37246861

The average lifespan of a neutrophil is less than 24 h, which limits basic research on neutrophils and the application of neutrophil studies. Our previous research indicated that multiple pathways could mediate the spontaneous death of neutrophils. A cocktail was developed by simultaneously targeting these pathways, caspases-lysosomal membrane permeabilization-oxidant-necroptosis inhibition plus granulocyte colony-stimulating factor (CLON-G), which prolonged the neutrophil lifespan to greater than 5 days without significantly compromising the neutrophil function. Concurrently, a reliable and stable protocol for assessing and evaluating neutrophil death was also developed. In this work, we show that CLON-G can prolong the neutrophil lifespan in vitro to more than 5 days, and we exhibit the lengthening of the neutrophil lifespan with FACS and confocal fluorescence microscopy. This report introduces procedures for the preparation of CLON-G and showcases an in vitro spontaneous death assay of neutrophils, which can be used for the study of neutrophils and for subsequently interrogating neutrophil death, thus providing a reliable resource for the neutrophil community.


Granulocyte-Macrophage Colony-Stimulating Factor , Neutrophils , Neutrophils/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Longevity , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Caspases/metabolism
16.
Psychol Res Behav Manag ; 16: 71-83, 2023.
Article En | MEDLINE | ID: mdl-36643733

Purpose: Stress may relate to an increased risk of psychological and physical disorders. Thus, a brief and efficient measurement instrument for researchers to measure stress is essentially needed. Participants and Methods: To assess measurement properties of the validated Chinese version of the Perceived Stress Questionnaire-13 (PSQ-C-13), we conducted a two-wave longitudinal study from September to December, 2021 with a convenient sample of medical students. Results: A two-factor (constraint and imbalance) structure showed good fit indices (Comparative Fit Index [CFI] = 0.972, Tucker-Lewis Index [TLI] = 0.966, Root Mean Square Error of Approximation [RMSEA] = 0.062). Spearman correlations with the Chinese Perceived Stress Scale-10 illustrated that convergent validity of the PSQ-C-13 was relatively satisfactory (r = 0.678 [baseline], 0.753 [follow-up]). Measurement invariance was supported across subgroups (gender, age, home location, single-child status, monthly households' income, and part-time status) and time points. Internal consistency was sound (Cronbach's α = 0.908 [baseline], 0.922 [follow-up]; McDonald's ω = 0.909 [baseline], 0.923 [follow-up]). Stability between time points was good (Intraclass Correlation Coefficient = 0.834). Conclusion: The two factors of the PSQ-C-13 including constraint and imbalance may adequately measure the level of stress on participants. The PSQ-C-13 is a convenient and efficient instrument that contains valid and reliable psychometric properties.

17.
Front Microbiol ; 14: 1339188, 2023.
Article En | MEDLINE | ID: mdl-38274764

Introduction: The gastrointestinal tract and oral cavity of animal species harbor complex microbial communities, the composition of which is indicative of the behavior, co-evolution, diet, and immune system of the host. Methods: This study investigated the microbial composition in snakes from varying altitudinal ranges by assessing the fecal and oral bacterial communities in Protobothrops mucrosquamatus, Elaphe dione, and Gloydius angusticeps from Sichuan Province, China, using metagenomic sequencing. Results and discussion: It was revealed that Bacteroidetes, Proteobacteria, Firmicutes, and Fusobacteria were the core microbial phyla in fecal samples across all three species, while Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were the core microbial phyla in oral samples across all three species. Notably, the dominance of Armatimonadetes was documented for the first time in the feces of all three species. Comparative analysis of the microbiomes of the three species indicated distinct microbiological profiles between snakes living at low- and high-altitude regions. Furthermore, 12 to 17 and 22 to 31 bacterial pathogens were detected in the oral and fecal samples, respectively, suggesting that snakes may serve as a novel reservoir for emerging diseases. Overall, this study provides a comparative analysis of the fecal and oral microbiomes in three snake species. Future investigations are anticipated to further elucidate the influence of age, genetics, behavior, diet, environment, ecology, and evolution on the gut and oral microbial communities of snakes.

18.
Polymers (Basel) ; 14(19)2022 Sep 22.
Article En | MEDLINE | ID: mdl-36235917

It is important to identify an environmentally friendly and efficient flocculant that can replace polyacrylamide for the solid-liquid separation of coal wastewater. In this study, to explore whether chitosan can be used as an environmentally friendly and efficient flocculant for the solid-liquid separation of coal wastewater, AlCl3-chitosan was used to conduct flocculation-sedimentation and dewatering tests under different chitosan dosages and shear-strength conditions for the prepared coal wastewater. Focused beam reflectance was measured to dynamically monitor the number of refractory fine particles, and the settled flocs were photographed and analyzed with microscopy to explore the effect of AlCl3-chitosan on the flocculation settlement effect and floc characteristics. The synergistic mechanisms of AlCl3 and chitosan were investigated using quartz crystal dissipative microbalance and zeta potential measurement. The results showed that the addition of chitosan can significantly improve the flocculation-sedimentation and dewatering effects of coal wastewater. A reasonable dosage under a certain shear strength is conducive to the reduction of fine slime particles, which results in a compact floc structure, increases the floc size, and improves the settling effect. The synergistic effect of AlCl3-chitosan improved the electric neutralization and adsorption bridging abilities of the chitosan, and the mixed solution of AlCl3 and chitosan had stronger adsorption on the carbon surface. This study provides a new approach to the selection of flocculants for coal wastewater treatment.

19.
Cell Prolif ; 55(7): e13257, 2022 Jul.
Article En | MEDLINE | ID: mdl-35642733

OBJECTIVES: CDC45 is the core component of CMG (CDC45-MCMs-GINS) complex that plays important role in the initial step of DNA replication in eukaryotic cells. The expression level of cdc45 is under the critical control for the accurate cell cycle progression. Loss-of-function of cdc45 has been demonstrated to inhibit cell proliferation and leads to cell death due to the inhibition of DNA replication and G1-phase arrest. An increasing of CDC45 inhibits cell proliferation as well. Nevertheless, a systematic analysis of the effect of high dose of CDC45 on cell physiology and behaviors is unclear. In the present study, we aimed to investigate the effects and mechanisms of high dose of CDC45 on cell behaviors. MATERIALS AND METHODS: We overexpressed cdc45 in cultured cell lines, Ciona and Drosophila embryos, respectively. The cell cycle progression was examined by the BrdU incorporation experiment, flow cytometry and PH3 (phospho-Histone 3) staining. RNA-sequencing analysis and qRT-PCR were carried out to screen the affected genes in HeLa cells overexpressing cdc45. siRNA-mediated knockdown was performed to investigate gene functions in HeLa cells overexpressing cdc45. RESULTS: We found that high level of cdc45 from different species (human, mammal, ascidian, and Drosophila) inhibited cell cycle in vitro and in vivo. High dose of CDC45 blocks cells entering into S phase. However, we failed to detect DNA damage and cell apoptosis. We identified hspa6 was the most upregulated gene in HeLa cells overexpressing cdc45 via RNA-seq analysis and qRT-PCR validation. Overexpression of Hs-hspa6 inhibited proliferation rate and DNA replication in HeLa cells, mimicking the phenotype of cdc45 overexpression. RNAi against hspa6 partially rescued the cell proliferation defect caused by high dose of CDC45. CONCLUSIONS: Our study suggests that high abundance of CDC45 stops cell cycle. Instead of inducing apoptosis, excessive CDC45 prevents cell entering S phase probably due to promoting hspa6 expression.


Cell Cycle Proteins , DNA Replication , HSP70 Heat-Shock Proteins/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Drosophila/metabolism , HeLa Cells , Humans , Mammals/metabolism
20.
Microb Drug Resist ; 28(5): 551-558, 2022 May.
Article En | MEDLINE | ID: mdl-35319308

Background: The purpose of this study is to raise awareness of the hazards of carbapenemase epidemics and provide theoretical support for preventing the spread of carbapenemase-producing organisms. Methods: A total of 893 non-duplicate E. coil strains were recruited from three major local hospitals. The carbapenemase genotype of each imipenem-resistant strain was analyzed. Molecular typing and homology analysis of the main carbapenemase-producing strains reveal the transmission mode of resistance genes. Through the conjugation experiment, the potential spreading risk of carbapenemase genes was analyzed. Extended-spectrum beta-lactamase genes and replicon detection of the conjugant carrying plasmid were performed. The unannotated Escherichia coli bacterial small non-coding RNAs (sRNAs) interacting with sdiA were predicted through a bioinformatics tool. The sRNAs overexpression and knockout strains were constructed, and the effect of sRNA on conjugation was analyzed. Results: A total of 8 carbapenemase-producing strains were detected (0.90%, 8/893). The main carbapenemase genotype was blaKPC -2 (7 strains). Multilocus sequence typing indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410, and ST-1193, ST-2562, respectively. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high diversity. The blaKPC -2 genes were successfully transferred from these isolates to EC600 by conjugation. All transconjugant cells exhibited significantly reduced susceptibility to the imipenem. IncFII was the most common conjugative plasmid type (85.7%, 6/7). Bioinformatics predicted the interaction between RydB and sdiA. Further experiments found that the interaction between RydB and sdiA improved the bacterial conjugation rate between MG1655 and EC600. The regulation effect of RydB on E. coli conjugation was not affected by the replicon type and/or harboring resistance coding genotype in conjugative plasmids. Conclusion: Our findings emphasized the epidemiological characteristics of carbapenemase-resistant E. coli. A functional phenotype of the new sRNA RydB was identified, and the regulation effect of RydB on E. coli conjugation was improved.


Escherichia coli Infections , RNA, Small Untranslated , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Conjugation, Genetic , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Humans , Imipenem/pharmacology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , RNA, Small Untranslated/pharmacology , beta-Lactamases/genetics , beta-Lactamases/pharmacology
...