Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 256: 118957, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636645

RESUMEN

In the current investigation, MnFe2O4/ZIF-8 nanocomposite was generated as a magnetic nanoadsorber using the extract of Dracocephalum plant and characterized by XRD, FTIR, VSM, BET, FESEM, EDS-mapping, TEM, XPS, TPD-NH3, and TGA analyses. Also, to determine its efficiency in the adsorption process of tetracycline, the effect of pH (3-9), nanocomposite dose (0.025-2 g/L), initial pollutant concentration (5-100 mg/L), contact time (5-200 min), and temperature (5-50 °C) were studied. The results of the morphological properties of the magnetic nanocomposite confirmed the spherical shape of this nanoadsorber with an average size of 54 ± 31 nm. BET analysis showed that modification of MnFe2O4 material with ZIF-8 as a new nanoadsorber leads to excellent modification of SBET (143.8 m2/g) and VTotal (0.44 cm3/g). The highest removal efficiency of tetracycline in optimal conditions (pH = 7, contact time = 120 min, nanocomposite dose = 1.5 g/L, and temperature = 20 °C for a tetracycline concentration of 20 mg/L) was 90.11%. As the temperature increased, the removal efficiency increased from 40.46% to 95.06% during 120 min, which indicates that the adsorption reaction is endothermic. In addition, the data obtained from the isotherms of Langmuir (R2 = 0.958), Freundlich (R2 = 0.534), and Temkin (R2 = 0.747) showed that the tetracycline adsorption is monolayer and on the homogeneous surface of the synthesized magnetic nanoadsorber. The elimination process of tetracycline by nanoadsorber followed the pseudo-second order model (R2 = 0.998). Investigating the effect of interfering ions also confirmed the decrease in the adsorption efficiency. Also, the investigation of the reusability of the synthesized magnetic nanoadsorber in tetracycline adsorption indicates that after eight cycles, the efficiency decreases by %16.51. According to the results, the magnetic nanocomposite synthesized in this work can be a suitable and economical adsorber for the removal of tetracycline from aqueous environments.


Asunto(s)
Compuestos Férricos , Compuestos de Manganeso , Tetraciclina , Termodinámica , Contaminantes Químicos del Agua , Adsorción , Tetraciclina/química , Compuestos de Manganeso/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cinética , Compuestos Férricos/química , Estructuras Metalorgánicas/química , Tecnología Química Verde/métodos , Nanopartículas de Magnetita/química , Purificación del Agua/métodos , Nanocompuestos/química
2.
Biodegradation ; 34(1): 83-101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592294

RESUMEN

Oil-contaminated soil is the main challenge for oil-rich countries, and this study aimed to investigate the performance of the H2O2-stimulated slurry bioreactor for the bioremediation of real oil-contaminated soil. The effect of biomass concentration, soil to water (S/W) ratio, slurry temperature, pH, and H2O2 concentration were optimized for the removal of total petroleum hydrocarbons (TPH) from oil-contaminated soil. TPH removal efficiency, biosurfactants production, and peroxidase and dehydrogenase activities were measured. The optimum conditions for the complete biodegradation of 32 [Formula: see text] in the slurry bioreactor during 6 days were biomass of 2250 mg/L, S/W ratio of 20%, the temperature of 30 °C, pH of 7, and an H2O2 concentration of 120 mg/L. The highest peroxidase, dehydrogenase, surfactin, and rhamnolipid formation were also obtained under optimum conditions. The results pointed out that complete biodegradation of 32 g/kg of TPH in oil-contaminated soil at a short reaction time of 6 days is achievable in the developed process operated under optimum conditions. The GC/FID analysis of solid and liquid phases showed that the bioprocess completely biodegraded the different TPH fractions. H2O2 efficiently stimulated the biosurfactant-generating bacteria to produce peroxidase and thereby accelerating the bioremediation rate. Accordingly, an H2O2-mediated slurry bioreactor inoculated with biosurfactant/peroxidase-generating bacteria is a promising technique for cleaning up oil-contaminated soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Peróxido de Hidrógeno/análisis , Metagenómica , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Suelo , Hidrocarburos/metabolismo , Reactores Biológicos , Peroxidasa , Peroxidasas , Bacterias/genética , Bacterias/metabolismo
3.
J Environ Manage ; 271: 110941, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778265

RESUMEN

A real crude oil-contaminated soil was treated using a two-step method: biosurfactant-assisted soil washing and the biostimulated biotreating of the effluent. The mixture of surfactin and rhamnolipid could enhance the TPH removal from an oil-contaminated soil (32 g/kg) in the soil washing operation. 86% of TPH was removed from the oil-contaminated soil in the soil washing operation under the mixed biosurfactant (surfactin + rhamnolipid) of 0.6 g/L, the soil/water ratio of 20 w/v%, the temperature of 30 °C, and the washing time of 24 h, leaving an effluent containing 5028 mg/L TPH. The effluent was efficiently biotreated in the bioprocess with 5 g/L acclimate biomass daily stimulated with 0.1 mM H2O2, and the concentrtion of TPH decreased to 26 mg/L within 17 d corresponding a TPH biodegradation over 99%. The biostimulation with H2O2 caused the production of a high amount of peroxidase that could accelerate the biodegradation of TPH. Accordingly, the findings suggest that the biosurfactant-assisted washing operation combined with the H2O2-stimulated biodegradation process could be an enhanced green method for efficient treatment of the heavy oil-contaminated soils.


Asunto(s)
Petróleo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Peróxido de Hidrógeno , Suelo , Microbiología del Suelo , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...