Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 297
1.
Int Arch Allergy Immunol ; : 1-9, 2024 May 17.
Article En | MEDLINE | ID: mdl-38763133

INTRODUCTION: Although microRNA (miR)-150-5p participates in the progression of renal fibrosis, its mechanism of action remains elusive. METHODS: A mouse model of unilateral ureteral obstruction was used. The in vitro renal fibrosis model was established by stimulating human kidney 2 (HK-2) cells with transforming growth factor beta 1 (TGF-ß1). The expression profiles of miR-150-5p, zinc finger E-box binding homeobox 1 (ZEB1), and other fibrosis- and epithelial-mesenchymal transition (EMT)-linked proteins were determined using Western blot and quantitative reverse transcription polymerase chain reaction. The relationship between miR-150-5p and ZEB1 in HK-2 cells was confirmed by a dual-luciferase reporter assay. RESULTS: Both in vivo and in vitro renal fibrosis models revealed reduced miR-150-5p expression and elevated ZEB1 level. A significant decrease in E-cadherin levels, as well as increases in alpha smooth muscle actin (α-SMA) and collagen type I (Col-I) levels, was seen in TGF-ß1-treated HK-2 cells. The overexpression of miR-150-5p ameliorated TGF-ß1-mediated fibrosis and EMT. Notably, miR-150-5p acts by directly targeting ZEB1. A significant reversal of the inhibitory impact of miR-150-5p on TGF-ß1-mediated fibrosis and EMT in HK-2 cells was observed upon ZEB1 overexpression. CONCLUSION: MiR-150-5p suppresses TGF-ß1-induced fibrosis and EMT by targeting ZEB1 in HK-2 cells, providing helpful insights into the therapeutic intervention of renal fibrosis.

2.
J Neurointerv Surg ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594067

BACKGROUND: In cavernous sinus dural arteriovenous fistulas (CS-DAVF), ophthalmological symptoms are usually the main clinical presentation, caused by abnormal drainage of the superior ophthalmic vein (SOV). Early opacification of the SOV during cerebral angiography inevitably signifies the fistula's shunt point at the confluence of the SOV and CS. We aimed to leverage this anatomical feature to achieve precise embolization, thereby enhancing the embolization success rate and preventing CS-related symptoms and complications resulting from overpacking. METHODS: This single-center, case series study was conducted between May 2017 and September 2023, and included the largest sample of CS-DAVF patients treated via the transfemoral vein-SOV approach. We retrospectively reviewed the data of 32 CS-DAVF patients with inferior petrosal sinus (IPS) occlusion. RESULTS: The study demonstrated an excellent immediate postoperative complete embolization rate (31/32, 97%). Only three patients (3/32, 9%) developed temporary endovascular treatment-related complications. The average operation time was 131.6±61.6 min, with an average of 1.2±1.1 coils and 1.8±1.2 mL Onyx glue used per patient. CS-DAVF-associated ophthalmological symptoms resolved in all patients. We also identified a rare anatomical variation, where 77% of the patients had a facial vein draining into the external jugular vein. CONCLUSIONS: Transfemoral vein-SOV embolization should be considered a crucial alternative approach in CS-DAVF patients with occluded IPS and predominantly SOV drainage. This approach showed an excellent immediate postoperative complete embolization rate and satisfactory long-term outcomes along with clinical safety. We therefore strongly advocate for this 'an eye for an eye' treatment strategy.

3.
Food Chem ; 448: 139127, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38608399

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Aptamers, Nucleotide , Biosensing Techniques , Copper , Zearalenone , Zearalenone/analysis , Zearalenone/chemistry , Copper/chemistry , Biosensing Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Limit of Detection , Molecular Docking Simulation , Metal Nanoparticles/chemistry , Fluorescence
4.
Nutrients ; 16(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38674791

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Dysbiosis , Faecalibacterium prausnitzii , Gastrointestinal Microbiome , Intestinal Mucosa , Probiotics , Sleep Deprivation , Animals , Sleep Deprivation/complications , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Feces/microbiology , Mice, Inbred C57BL , Dietary Supplements , Disease Models, Animal , Mucin-2/metabolism , Butyrates/metabolism , Colon/microbiology , Colon/metabolism
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38542450

Lung aging triggers the onset of various chronic lung diseases, with alveolar repair being a key focus for alleviating pulmonary conditions. The regeneration of epithelial structures, particularly the differentiation from type II alveolar epithelial (AT2) cells to type I alveolar epithelial (AT1) cells, serves as a prominent indicator of alveolar repair. Nonetheless, the precise role of aging in impeding alveolar regeneration and its underlying mechanism remain to be fully elucidated. Our study employed histological methods to examine lung aging effects on structural integrity and pathology. Lung aging led to alveolar collapse, disrupted epithelial structures, and inflammation. Additionally, a relative quantification analysis revealed age-related decline in AT1 and AT2 cells, along with reduced proliferation and differentiation capacities of AT2 cells. To elucidate the mechanisms underlying AT2 cell functional decline, we employed transcriptomic techniques and revealed a correlation between inflammatory factors and genes regulating proliferation and differentiation. Furthermore, a D-galactose-induced senescence model in A549 cells corroborated our omics experiments and confirmed inflammation-induced cell cycle arrest and a >30% reduction in proliferation/differentiation. Physiological aging-induced chronic inflammation impairs AT2 cell functions, hindering tissue repair and promoting lung disease progression. This study offers novel insights into chronic inflammation's impact on stem cell-mediated alveolar regeneration.


Alveolar Epithelial Cells , Lung , Humans , Alveolar Epithelial Cells/metabolism , Cells, Cultured , Lung/metabolism , Cell Differentiation/physiology , Inflammation/metabolism
6.
Nutrients ; 16(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38474716

BACKGROUND: The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS: MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.


Glycolipids , Glycoproteins , Infant , Humans , Emulsions , Glycolipids/chemistry , Glycoproteins/chemistry , Milk Proteins/chemistry , Lipid Droplets , Emulsifying Agents
7.
Int J Neurosci ; : 1-7, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38484274

OBJECTIVE: The objective of this paper was to assess the risk factors for persistent headache attributed to retrosigmoid craniotomy. Furthermore, we evaluated the role of the 3D computed tomography venography(CTV) image-guided technique in reducing the incidence of persistent headache. METHOD: The study encompassed patients with trigeminal neuralgia who underwent microvascular decompression. Patients were categorized into two groups based on the use of 3D CTV in surgical planning. Factors related to craniotomy and postoperative complications were analyzed between the two groups. Binary logistic regression analysis was conducted to identify risk factors for persistent headache attributed to craniotomy. RESULT: The inclusion criteria yielded 48 patients who underwent craniotomy with 3D CTV image guidance (the image-guided group) and 69 patients who did not use this technique (the control group). The image-guided group experienced significantly shorter craniotomy durations (27.9 ± 4.7 vs. 37.5 ± 8.0 min; p < 0.001), smaller craniotomy areas (472.7 ± 56.7 vs. 617.4 ± 89.7 mm2; p < 0.001), and reduced bone defects (141.8 ± 33.5 vs. 233.2 ± 71.1 mm2; p < 0.001). Bone defect (OR: 1.012; 95% CI: 1.005-1.018; p < 0.001) was found to be significantly associated with persistent headache in the multivariate analysis. CONCLUSIONS: Bone defects constitute an independent risk factor for persistent headache attributed to retrosigmoid craniotomy. The 3D CTV image-guided technique effectively reduces the size of bone defects, thereby leading to a reduced incidence of persistent headache postoperatively.

8.
Microorganisms ; 12(3)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38543544

Probiotics are live microorganisms with immunomodulatory effects in a strain-specific and dose-dependent manner. Bifidobacterium animalis subsp. lactis IU100 is a new probiotic strain isolated from healthy adults. This study aimed to evaluate the effects of IU100 on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that IU100 significantly ameliorated CTX-induced decreases in body weight and immune organ indices. The promoted delayed-type hypersensitivity, serum hemolysins and immunoglobulin (IgA, IgG and IgM) levels after IU100 treatment indicated its enhancing role in cellular and humoral immunity. In addition, oral administration of IU100 increased serum cytokine (IL-1ß, IL-2, IL-4, IL-6, IFN-γ, TNF-α) levels dose-dependently, which are associated with CTX-induced shifts in the Th1/Th2 balance. The probiotic IU100 also modulated the composition of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio; increasing beneficial Muribaculaceae and the Lachnospiraceae NK4A136 group; and inhibiting harmful Clostridium sensu stricto 1, Faecalibaculum and Staphylococcus at the genus level. The above genera were found to be correlated with serum cytokines and antibody levels. These findings suggest that IU100 effectively enhances the immune function of immunosuppressed mice, induced by CTX, by regulating gut microbiota.

9.
ACS Appl Mater Interfaces ; 16(14): 17092-17108, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38533625

The increasing aging of the population has elevated bone defects to a significant threat to human life and health. Aerogel, a biomimetic material similar to an extracellular matrix (ECM), is considered an effective material for the treatment of bone defects. However, most aerogel scaffolds suffer from immune rejection and poor anti-inflammatory properties and are not well suited for human bone growth. In this study, we used electrospinning to prepare flexible ZnO-SiO2 nanofibers with different zinc concentrations and further assembled them into three-dimensional composite aerogel scaffolds. The prepared scaffolds exhibited an ordered pore structure, and chitosan (CS) was utilized as a cross-linking agent with aspirin (ASA). Interestingly, the 1%ZnO-SiO2/CS@ASA scaffolds not only exhibited good biocompatibility, bioactivity, anti-inflammation, and better mechanical properties but also significantly promoted vascularization and osteoblast differentiation in vitro. In the mouse cranial defect model, the BV/TV data showed a higher osteogenesis rate in the 1%ZnO-SiO2/CS group (10.94 ± 0.68%) and the 1%ZnO-SiO2/CS@ASA group (22.76 ± 1.83%), compared with the control group (5.59 ± 2.08%), and in vivo studies confirmed the ability of 1%ZnO-SiO2/CS@ASA to promote in situ regeneration of new bone. This may be attributed to the fact that Si4+, Zn2+, and ASA released from 1%ZnO-SiO2/CS@ASA scaffolds can promote angiogenesis and bone formation by stimulating the interaction between endothelial cells (ECs) and BMSCs, as well as inducing macrophage differentiation to the M2 type and downregulating the expression of pro-inflammatory factor (TNF-α) to modulate local inflammatory response. These exciting results and evidence suggest that it provides a new and effective strategy for the treatment of bone defects.


Chitosan , Mesenchymal Stem Cells , Zinc Oxide , Mice , Animals , Humans , Tissue Scaffolds/chemistry , Zinc Oxide/pharmacology , Aspirin/pharmacology , Endothelial Cells , Bone Regeneration , Osteogenesis , Chitosan/pharmacology , Chitosan/metabolism , Cell Differentiation , Anti-Inflammatory Agents/pharmacology , Tissue Engineering/methods
10.
Heliyon ; 10(3): e25145, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38322941

Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.

11.
Heliyon ; 10(3): e25037, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38333825

Objectives: This retrospective cohort study aimed to analyze volumes of craniomaxillofacial bone and masticatory muscles of young adults with bilateral idiopathic condylar resorption. Methods: This was a retrospective cohort study of 84 adults with bilateral idiopathic condylar resorption (BCR) and 48 adults with normal temporal-mandibular joint (TMJ) matched for age and sex (mean age, 23.2 ± 3.6 years). The volumes of craniomaxillofacial bone and masticatory muscles, as well as intercondylar angle were measured. Unpaired t-tests and Pearson correlation tests were applied to analyze the data. Multivariable linear regression models were used to estimate the association between bilateral condylar volume and volumes of craniomaxillofacial bone and masticatory muscles adjusted for age, sex, and disc status. Results: Compared to the control group, the BCR group displayed significant decreased volumes of craniomaxillofacial bone (p < 0.001), craniomaxillofacial bone without mandible (p < 0.001), mandible (p < 0.001), mandible without mandibular condylar process (p < 0.001), bilateral masseter muscle (p < 0.001) and bilateral temporalis muscle (p < 0.001), as well as the intercondylar angle (p < 0.001). These variables were significantly correlated to the volume of mandibular condylar process (0.5< r < 0.8; p < 0.001). By linear regression analyses, significant associations were found for the bilateral condylar volume with craniomaxillofacial bone volume and mandible bone volume. Conclusions: Young adults with BCR displayed smaller volumes of craniomaxillofacial skeleton and masticatory muscles, and smaller intercondylar angle than the normal patients. The craniofacial musculoskeletal volume and intercondylar angle are associated with mandibular condylar process volume.

12.
Front Pharmacol ; 15: 1363346, 2024.
Article En | MEDLINE | ID: mdl-38389925

Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.

13.
J Transl Med ; 22(1): 169, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368407

BACKGROUND: Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS: Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS: The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1ß) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS: S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.


Adenomatous Polyps , Firmicutes , Humans , Animals , Mice , RNA, Ribosomal, 16S/genetics , Inflammation/complications , Adenomatous Polyps/complications
14.
J Biomed Mater Res B Appl Biomater ; 112(1): e35363, 2024 01.
Article En | MEDLINE | ID: mdl-38247247

This study explores the use of in situ cross-linked hyaluronic acid methacryloyl (HAMA) and hydroxyapatite particles (HAP) for bone defect repair. Human periodontal ligament stem cells (PDLSCs) were isolated and co-cultured with the HAMA-HAP composite. Osteogenic differentiation was evaluated using Alizarin Red staining, alkaline phosphatase activity quantification, and polymerase chain reaction (PCR). A cranial defect was induced in Sprague-Dawley rats. This defect was then filled with the HAMA-HAP composite and cross-linked using UV light exposure. Bone formation was assessed through radiographic and histological analyses. The HAMA-HAP composite was found to promote cell viability similarly to pure HAP. It also enhanced gene expression of ALP, OPN, and Runx2, and increased ALP activity and mineralized nodule formation in vitro. Micro-CT scans showed defect restoration in the HAMA-HAP and HAP groups compared to the control group. The HAMA-HAP group exhibited higher Tb.N, Tb.Sp, Tb.Th, and BV/TV. Masson staining showed the HAMA-HAP composite restored the defect site, with new bone formation thicker than in the HAP group. The HAMA-HAP composite showed excellent biocompatibility and promoted osteogenic differentiation of PDLSCs. It effectively repaired cranial defects, indicating its potential for clinical use in bone defect repair.


Hydrogels , Osteogenesis , Rats , Humans , Animals , Rats, Sprague-Dawley , Hydrogels/pharmacology , Bone Regeneration , Durapatite/pharmacology , Hyaluronic Acid/pharmacology
15.
BMC Oral Health ; 24(1): 24, 2024 01 05.
Article En | MEDLINE | ID: mdl-38183059

BACKGROUND: The profound influence of orthodontic treatments on facial aesthetics has been a topic of increasing interest. This study delves into the intricate interplay between orthodontic treatments, facial feature alterations, and aesthetic perceptions. METHODS: A total of 73 patients who had undergone orthodontic treatment were included in this study. Facial photographs were taken before and after treatment. Ten orthodontists provided facial aesthetic ratings (FAR) for each patient's frontal, profile, and overall views. 48 facial landmarks were manually placed by the orthodontists and normalized using Generalized Procrustes analysis (GPA). Two types of phenotypes were derived from facial landmarks. Global facial phenotypes were then extracted using principal component analysis (PCA). Additionally, 37 clinical features related to aesthetics and orthodontics were extracted. The association between facial features and changes in FAR after orthodontic treatment was determined using these two types of phenotypes. RESULTS: The FAR exhibited a high correlation among orthodontic experts, particularly in the profile view. The FAR increased after orthodontic treatment, especially in profile views. Extraction of premolars and orthognathic surgery were found to result in higher FAR change. For global facial phenotypes, the most noticeable changes in the frontal and profile views associated with FAR occurred in the lip area, characterized by inward retraction of the lips and slight chin protrusion in the profile view, as well as a decrease in lip height in the frontal view. The changes observed in the profile view were statistically more significant than those in the frontal view. These facial changes were consistent with the changes from orthodontic treatment. For clinical features, two profile features, namely pg.sm.hori and pg.n.ls, were found to be associated with FAR following orthodontic treatment. The highest FAR scores were achieved when pg.sm.hori was at 80° and pg.n.ls was at 8°. On the other hand, frontal clinical features had a subtle effect on FAR during orthodontic treatment. CONCLUSIONS: This study demonstrated that orthodontic treatment improves facial aesthetics, particularly at lip aera in the profile view. Profile clinical features, such as pg.sm.hori and pg.n.ls, are essential in orthodontic treatment which could increase facial aesthetics.


Esthetics, Dental , Face , Humans , Retrospective Studies , Lip , Chin
16.
Clin Oral Investig ; 28(1): 121, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38280038

OBJECTIVE: We aimed to develop a tool for virtual orthodontic bracket removal based on deep learning algorithms for feature extraction from bonded teeth and to demonstrate its application in a bracket position assessment scenario. MATERIALS AND METHODS: Our segmentation network for virtual bracket removal was trained using dataset A, containing 978 bonded teeth, 20 original teeth, and 20 brackets generated by scanners. The accuracy and segmentation time of the network were tested by dataset B, which included an additional 118 bonded teeth without knowing the original tooth morphology. This tool was then applied for bracket position assessment. The clinical crown center, bracket center, and orientations of separated teeth and brackets were extracted for analyzing the linear distribution and angular deviation of bonded brackets. RESULTS: This tool performed virtual bracket removal in 2.9 ms per tooth with accuracies of 98.93% and 97.42% (P < 0.01) in datasets A and B, respectively. The tooth surface and bracket characteristics were extracted and used to evaluate the results of manually bonded brackets by 49 orthodontists. Personal preferences for bracket angulation and bracket distribution were displayed graphically and tabularly. CONCLUSIONS: The tool's efficiency and precision are satisfactory, and it can be operated without original tooth data. It can be used to display the bonding deviation in the bracket position assessment scenario. CLINICAL SIGNIFICANCE: With the aid of this tool, unnecessary bracket removal can be avoided when evaluating bracket positions and modifying treatment plans. It has the potential to produce retainers and orthodontic devices prior to tooth debonding.


Deep Learning , Dental Bonding , Orthodontic Brackets , Dental Bonding/methods , Dental Debonding/methods , Microscopy, Electron, Scanning
17.
Nat Commun ; 15(1): 227, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172093

Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.


Bifidobacterium animalis , Dyspepsia , Probiotics , Humans , Dyspepsia/therapy , Probiotics/therapeutic use , Feces/microbiology , Double-Blind Method
18.
Adv Sci (Weinh) ; 11(4): e2305890, 2024 Jan.
Article En | MEDLINE | ID: mdl-38039434

Biomaterials encounter considerable challenges in extensive bone defect regeneration. The amelioration of outcomes may be attainable through the orchestrated modulation of both innate and adaptive immunity. Silicon-hydroxyapatite, for instance, which solely focuses on regulating innate immunity, is inadequate for long-term bone regeneration. Herein, extra manganese (Mn)-doping is utilized for enhancing the osteogenic ability by mediating adaptive immunity. Intriguingly, Mn-doping engenders heightened recruitment of CD4+ T cells to the bone defect site, concurrently manifesting escalated T helper (Th) 2 polarization and an abatement in Th1 cell polarization. This consequential immune milieu yields a collaborative elevation of interleukin 4, secreted by Th2 cells, coupled with attenuated interferon gamma, secreted by Th1 cells. This orchestrated interplay distinctly fosters the osteogenesis of bone marrow stromal cells and effectuates consequential regeneration of the mandibular bone defect. The modulatory mechanism of Th1/Th2 balance lies primarily in the indispensable role of manganese superoxide dismutase (MnSOD) and the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In conclusion, this study highlights the transformative potential of Mn-doping in amplifying the osteogenic efficacy of silicon-hydroxyapatite nanowires by regulating T cell-mediated adaptive immunity via the MnSOD/AMPK pathway, thereby creating an anti-inflammatory milieu favorable for bone regeneration.


Nanowires , Osteogenesis , Manganese/pharmacology , Silicon/pharmacology , Durapatite/pharmacology , AMP-Activated Protein Kinases/pharmacology
19.
J Agric Food Chem ; 72(2): 1067-1081, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38112024

Alzheimer's disease (AD) is distinguished by cognitive dysfunction and neuroinflammation in the brain. 2'-Fucosyllactose (2'-FL) is a major human milk oligosaccharide (HMO) that is abundantly present in breast milk and has been demonstrated to exhibit immunomodulatory effects. However, the role of 2'-FL and HMO in gut microbiota modulation in relation to AD remains insufficiently investigated. This study aimed to elucidate the preventive effect of the 2'-FL and HMO impact of AD and the relevant mechanism involved. Here, the behavioral results showed that 2'-FL and HMO intervention decreased the expression of Tau phosphorylation and amyloid-ß (Aß), inhibited neuroinflammation, and restored cognitive impairment in AD mice. The metagenomic analysis proved that 2'-FL and HMO intervention restored the dysbiosis of the gut microbiota in AD. Notably, 2'-FL and HMO intervention significantly enhanced the relative abundance of Clostridium and Akkermansia. The metabolomics results showed that 2'-FL and HMO enhanced the oleoyl-l-carnitine metabolism as potential drivers. More importantly, the levels of oleoyl-l-carnitine were positively correlated with the abundances of Clostridium and Akkermansia. These results indicated that 2'-FL and HMO had therapeutic potential to prevent AD-induced cognitive impairment, which is of great significance for the treatment of AD.


Alzheimer Disease , Milk, Human , Female , Humans , Mice , Animals , Milk, Human/metabolism , Alzheimer Disease/drug therapy , Neuroinflammatory Diseases , Oligosaccharides/metabolism , Carnitine
20.
Nutrients ; 15(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38068835

The number of obese people is increasing dramatically worldwide, and one of the major causes of obesity is excess energy due to high-fat diets. Several studies have shown that reducing food and energy intake represents a key intervention or treatment to combat overweight/obesity. Here, we conducted a 12-week energy-restricted dietary intervention for high-fat diet-induced obese mice (C57BL/6J) to investigate the effectiveness of diet change in improving obesity. The results revealed that the diet change from HFD to NFD significantly reduced weight gain and subcutaneous adipose tissue weight in high-fat diet-induced obese mice, providing scientific evidence for the effectiveness of diet change in improving body weight and fat deposition in obese individuals. Regarding the potential explanations for these observations, weight reduction may be attributed to the excessive enlargement of adipocytes in the white adipose tissue of obese mice that were inhibited. Diet change significantly promoted lipolysis in the adipose tissue (eWAT: Adrb3, Plin1, HSL, and CPTA1a; ingWAT: CPT1a) and liver (reduced content of nonesterified fatty acids), and reduced lipogenesis in ingWAT (Dgat2). Moreover, the proportion of proliferative stem cells in vWAT and sWAT changed dramatically with diet change. Overall, our study reveals the phenotypic, structural, and metabolic diversity of multiple tissues (vWAT and sWAT) in response to diet change and identifies a role for adipocyte stem cells in the tissue specificity of diet change.


Diet, High-Fat , Obesity , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Mice, Obese , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Lipids
...