Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Cancer ; 23(1): 137, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970074

RESUMEN

BACKGROUND: The outcome of hepatocellular carcinoma (HCC) is limited by its complex molecular characteristics and changeable tumor microenvironment (TME). Here we focused on elucidating the functional consequences of Maternal embryonic leucine zipper kinase (MELK) in the tumorigenesis, progression and metastasis of HCC, and exploring the effect of MELK on immune cell regulation in the TME, meanwhile clarifying the corresponding signaling networks. METHODS: Bioinformatic analysis was used to validate the prognostic value of MELK for HCC. Murine xenograft assays and HCC lung metastasis mouse model confirmed the role of MELK in tumorigenesis and metastasis in HCC. Luciferase assays, RNA sequencing, immunopurification-mass spectrometry (IP-MS) and coimmunoprecipitation (CoIP) were applied to explore the upstream regulators, downstream essential molecules and corresponding mechanisms of MELK in HCC. RESULTS: We confirmed MELK to be a reliable prognostic factor of HCC and identified MELK as an effective candidate in facilitating the tumorigenesis, progression, and metastasis of HCC; the effects of MELK depended on the targeted regulation of the upstream factor miR-505-3p and interaction with STAT3, which induced STAT3 phosphorylation and increased the expression of its target gene CCL2 in HCC. In addition, we confirmed that tumor cell-intrinsic MELK inhibition is beneficial in stimulating M1 macrophage polarization, hindering M2 macrophage polarization and inducing CD8 + T-cell recruitment, which are dependent on the alteration of CCL2 expression. Importantly, MELK inhibition amplified RT-related immune effects, thereby synergizing with RT to exert substantial antitumor effects. OTS167, an inhibitor of MELK, was also proven to effectively impair the growth and progression of HCC and exert a superior antitumor effect in combination with radiotherapy (RT). CONCLUSIONS: Altogether, our findings highlight the functional role of MELK as a promising target in molecular therapy and in the combination of RT therapy to improve antitumor effect for HCC.


Asunto(s)
Carcinoma Hepatocelular , Quimiocina CCL2 , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinasas , Microambiente Tumoral , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/radioterapia , Humanos , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quimiocina CCL2/metabolismo , Línea Celular Tumoral , Tolerancia a Radiación , Pronóstico , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , MicroARNs/genética
3.
Asian J Pharm Sci ; 19(2): 100905, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38595332

RESUMEN

Chemotherapy plays a crucial role in triple-negative breast cancer (TNBC) treatment as it not only directly kills cancer cells but also induces immunogenic cell death. However, the chemotherapeutic efficacy was strongly restricted by the acidic and hypoxic tumor environment. Herein, we have successfully formulated PLGA-based nanoparticles concurrently loaded with doxorubicin (DOX), hemoglobin (Hb) and CaCO3 by a CaCO3-assisted emulsion method, aiming at the effective treatment of TNBC. We found that the obtained nanomedicine (DHCaNPs) exhibited effective drug encapsulation and pH-responsive drug release behavior. Moreover, DHCaNPs demonstrated robust capabilities in neutralizing protons and oxygen transport. Consequently, DHCaNPs could not only serve as oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment (TME) by depleting lactic acid, thereby effectively overcoming the resistance to chemotherapy. Furthermore, DHCaNPs demonstrated a notable ability to enhance antitumor immune responses by increasing the frequency of tumor-infiltrating effector lymphocytes and reducing the frequency of various immune-suppressive cells, therefore exhibiting a superior efficacy in suppressing tumor growth and metastasis when combined with anti-PD-L1 (αPD-L1) immunotherapy. In summary, this study highlights that DHCaNPs could effectively attenuate the acidic and hypoxic TME, offering a promising strategy to figure out an enhanced chemo-immunotherapy to benefit TNBC patients.

4.
ACS Nano ; 18(12): 8811-8826, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466366

RESUMEN

Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proproteína Convertasa 9/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Hepáticas/tratamiento farmacológico , Homeostasis , Subtilisinas
5.
Technol Cancer Res Treat ; 22: 15330338231195494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37650153

RESUMEN

Background: Hypoxia is known to play a critical role in tumor occurrence, progression, prognosis, and therapy resistance. However, few studies have investigated hypoxia markers for diagnosing and predicting prognosis in colon adenocarcinoma (COAD). This study aims to identify a hypoxia genes-based biomarker for predicting COAD patients' prognosis and response to immunotherapy on an individual basis. Methods: Hypoxia-related genes were extracted from the Molecular Signatures Database. Gene expression, clinical data, and mutation data of COAD were collected retrospectively from the Cancer Genome Atlas, the Gene Expression Omnibus, and the International Cancer Genome Consortium databases. Univariate and multivariate cox regression, and the least absolute shrinkage and selection operator method were used to select the genes most associated with the prognosis of COAD patients. Kaplan-Meier survival analysis, receiver operating characteristic curves, calibration curves, and decision curve analyses were performed to validate the efficacy of the signature in predicting the prognosis of COAD patients. EdU incorporation assays, cell survival assays, western blot assays, and trans-well invasion assays were performed to further confirm the function of the screened genes in tumorigenesis. Results: ENO3 and KDM3A were identified as key genes for constructing prognostic and diagnostic signatures, which were found to be independent risk factors for predicting the prognosis and diagnosis of COAD patients. Using these signatures, COAD patients could be stratified into high-risk and low-risk groups, with the latter exhibiting better overall survival outcomes. Moreover, the high-risk group displayed elevated levels of immune checkpoint genes and tumor mutation burden, indicating that these patients may benefit from immune checkpoint inhibitor therapy. Conclusion: The signature developed in this study demonstrates excellent efficacy in prognosticating the outcomes of COAD patients. Moreover, it can serve as a valuable tool for clinicians to identify COAD patients who are suitable for ICI therapy.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Estudios Retrospectivos , Pronóstico , Hipoxia , Microambiente Tumoral/genética , Histona Demetilasas con Dominio de Jumonji
6.
Mil Med Res ; 10(1): 36, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587531

RESUMEN

Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tejidos Blandos , Humanos , Piel , Cicatrización de Heridas
7.
Biomater Sci ; 11(18): 6109-6115, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37591802

RESUMEN

The field of biomaterials has experienced substantial evolution in recent years, driven by advancements in materials science and engineering. This has led to an expansion of the biomaterials definition to include biocompatibility, bioactivity, bioderived materials, and biological tissues. Consequently, the intended performance of biomaterials has shifted from a passive role wherein a biomaterial is merely accepted by the body to an active role wherein a biomaterial instructs its biological environment. In the future, the integration of bioinspired designs and dynamic behavior into fabrication technologies will revolutionize the field of biomaterials. This perspective presents the recent advances in the evolution of biomaterials in fabrication technologies and provides a brief insight into smart biomaterials.


Asunto(s)
Materiales Biocompatibles , Ingeniería
8.
Hepatol Int ; 17(6): 1500-1518, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37460832

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is most common malignant tumor worldwide, and one of the most lethal malignancies. MEX3A, RNA-binding protein, is profoundly implicated in tumor initiation and progression. But its role and potential mechanism in HCC remains fully unclear. METHODS: The expression of MEX3A in HCC was analysis using the data derived from the Cancer Genome Atlas (TCGA) dataset and further confirmed by HCC samples and cells lines. The roles of MEX3A in the proliferation, migration and sorafenib resistance were detected both in vitro and vivo. In addition, the underline mechanism was investigated. RESULTS: In this study, MEX3A expression was upregulated in HCC tissue and cell lines. Knockdown or overexpression of MEX3A disturbed the proliferation, migration and apoptosis of HCC cells by modulating the activation of Hippo signaling pathway. The expression of MEX3A was negatively associated with sorafenib sensitivity and upregulated in sorafenib resistant HCC cells. MEX3A knockdown facilitated the expression of WWC1, a negative modulator of Hippo signaling pathway, and led to increase of the phosphorylation of LATS1 and YAP1. Pharmacological inhibition of LATS1 or WWC1 overexpression alleviated the proliferative and migrated suppression and increased sorafenib sensitivity, whereas WWC1 inhibition using genetic interference strategy showed opposite trend in MEX3A knockdown HCC cells. Importantly, MEX3A knockdown led to growth and lung metastasis inhibition using xenograft model established by means of subcutaneous or tail vein injection. In addition, a combination of MEX3A knockdown and WWC1 overexpression dramatically enhances the growth inhibition of sorafenib in vivo. CONCLUSION: MEX3A may facilitate HCC progression and hinder sorafenib sensitivity via inactivating Hippo signaling. The present study suggested that targeting MEX3A can be served as a novel therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/uso terapéutico , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/uso terapéutico , Proteínas de Unión al ARN/genética
9.
Biomater Sci ; 11(16): 5533-5539, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37395046

RESUMEN

Heparin is a widely used anticoagulant agent in the clinic. After application, its anticoagulant effect must be reversed to prevent potential side effects. Protamine sulfate (PS) is the only clinically licensed antidote that has been used for this purpose in the last 80 years, which, however, provokes severe adverse effects, such as systemic hypotension and even death. Herein, we demonstrate the potential of supercharged polypeptides as a promising alternative for protamine sulfate. A series of supercharged polypeptides with multiple positive charges was recombinantly produced, and the heparin-neutralizing performance of the polypeptides was evaluated in comparison with PS. It was found that increasing the number of charges significantly enhanced the ability to neutralize heparin and resist the screening effect induced by salt. In particular, the polypeptide bearing 72 charges (K72) exhibited an excellent heparin-neutralizing behavior that was comparable to that of PS. Further in vivo studies revealed that the heparin-triggered bleeding was almost completely alleviated by K72 while a negligible toxic effect was observed. Therefore, such recombinant supercharged polypeptides might replace protamine sulfate as heparin-reversal agents.


Asunto(s)
Anticoagulantes , Heparina , Humanos , Heparina/farmacología , Anticoagulantes/farmacología , Protaminas/efectos adversos , Péptidos/uso terapéutico , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico
10.
Biol Proced Online ; 25(1): 13, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208604

RESUMEN

BACKGROUND: The treatment efficacy of transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) varies widely between individuals. The aim of this study was to identify subtype landscapes and responser related to TACE, and further clarify the regulatory effect and corresponding mechanism of NDRG1 on HCC tumorgenesis and metastasis. METHODS: The principal component analysis (PCA) algorithm was used to construct a TACE response scoring (TRscore) system. The random forest algorithm was applied to identify the TACE response-related core gene NDRG1 of HCC, and its role in the prognosis of HCC was explored. The role of NDRG1 in the progression and metastasis of HCC and functional mechanism were confirmed using several experimental methods. RESULTS: Based on the GSE14520 and GSE104580 cohorts, we identified 2 TACE response-related molecular subtypes for HCC with significant differences in clinical features, and the TACE prognosis of Cluster A was significantly better than that of Cluster B (p < 0.0001). We then established the TRscore system and found that the low TRscore group showed a higher probability of survival and a lower rate of recurrence than the high TRscore group (p < 0.05) in both the HCC and TACE-treated HCC cohorts within the GSE14520 cohort. NDRG1 was determined to be the the hub gene associated with the TACE response of HCC and its high expression suggested a poor prognosis. Furthermore, The suppression of NDRG1 konckdown in tumorgenesis and metastasis of HCC was clarified in both vivo and vitro, which was importantly achieved through inducing ferroptosis in HCC cells, especially contributing to RLS3-induced ferroptosis. CONCLUSION: The constructed TACE response-related molecular subtypes and TRscores can specifically and accurately predict TACE prognosis for HCC. In addition, the TACE response-related hub gene NDRG1 may act as a guardian against ferroptosis to drive tumorgenesis and metastasis in HCC, which laid a new foundation for the development of new potential targeted therapy strategies to improve disease prognosis in HCC patients.

11.
Insights Imaging ; 14(1): 38, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854872

RESUMEN

OBJECTIVES: This study compared the accuracy of predicting transarterial chemoembolization (TACE) outcomes for hepatocellular carcinoma (HCC) patients in the four different classifiers, and comprehensive models were constructed to improve predictive performance. METHODS: The subjects recruited for this study were HCC patients who had received TACE treatment from April 2016 to June 2021. All participants underwent enhanced MRI scans before and after intervention, and pertinent clinical information was collected. Registry data for the 144 patients were randomly assigned to training and test datasets. The robustness of the trained models was verified by another independent external validation set of 28 HCC patients. The following classifiers were employed in the radiomics experiment: machine learning classifiers k-nearest neighbor (KNN), support vector machine (SVM), the least absolute shrinkage and selection operator (Lasso), and deep learning classifier deep neural network (DNN). RESULTS: DNN and Lasso models were comparable in the training set, while DNN performed better in the test set and the external validation set. The CD model (Clinical & DNN merged model) achieved an AUC of 0.974 (95% CI: 0.951-0.998) in the training set, superior to other models whose AUCs varied from 0.637 to 0.943 (p < 0.05). The CD model generalized well on the test set (AUC = 0.831) and external validation set (AUC = 0.735). CONCLUSIONS: DNN model performs better than other classifiers in predicting TACE response. Integrating with clinically significant factors, the CD model may be valuable in pre-treatment counseling of HCC patients who may benefit the most from TACE intervention.

12.
Exp Cell Res ; 425(1): 113525, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841324

RESUMEN

Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Proteómica , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Metástasis de la Neoplasia , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/metabolismo
13.
Eur J Pharmacol ; 940: 175465, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566915

RESUMEN

Liver cancer is a kind of malignant tumor with poor sensitivity to chemotherapy. It is urgent to investigate approaches to improve the outcome of chemotherapy. KDM5A has been reported to be an oncogene in various cancers and is associated with drug resistance. However, the functions of KDM5A in chemotherapeutic sensitivity of liver cancer not been well illustrated. In this study, we found that KDM5A was upregulated in liver cancer tissue and cell lines. KDM5A knockdown using a gene interference strategy suppressed the growth of liver cancer in vitro and in vivo. CPI-455, a pharmacological inactivation of KDM5A enhanced the cytotoxicity of cisplatin (CDDP) in liver cells. CPI-455 and CDDP cotreatment resulted in apoptosis and mitochondrial dysfunction. We also found that knockdown or inactivation of KDM5A resulted in the downregulation of ROCK1, an oncogene regulating the activation of the PTEN/AKT signaling pathway. In particular, overexpression of ROCK1 or SF1670, a pharmacological inhibitor of PTEN, alleviated the cytotoxicity of CPI-455 and CDDP cotreatment. In HCCLM3 xenografts, CPI-455 and CDDP cotreatment dramatically inhibited the growth of xenograft tumor compared to CPI-455 or CDDP treatment alone. In conclusion, this study suggested that targeting the inactivation of KDM5A is an efficient strategy to enhance the chemosensitivity of liver cancer cells to CDDP by modulating the ROCK1/PTEN/AKT signaling pathway.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Transducción de Señal , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteína 2 de Unión a Retinoblastoma/metabolismo , Quinasas Asociadas a rho/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
14.
Cancer Lett ; 554: 216021, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455758

RESUMEN

Tumor-associated macrophages (TAMs) play an important role in remodeling the tumor microenvironment (TME), which promotes tumor growth, immunosuppression and angiogenesis. Because of the high plasticity of macrophages and the extremely complex tumor microenvironment, the mechanism of TAMs in cancer progression is still largely unknown. In this study, we found that xCT (SLC7A11) was overexpressed in lung cancer-associated macrophages. Higher xCT in TAMs was associated with poor prognosis and was an independent predictive factor in lung cancer. In addition, lung cancer growth and progression was inhibited in xCT knockout mice, especially macrophage-specific xCT knockout mice. We also found that the deletion of macrophage xCT inhibited AKT/STAT6 signaling activation and reduced M2-type polarization of TAMs. Macrophage xCT deletion recruited more CD8+ T cells and activated the lung cancer cell-mediated and IFN-γ-induced JAK/STAT1 axis and increased the expression of its target genes, including CXCL10 and CD274. The combination of macrophage xCT deletion and anti-PDL1 antibody achieved better tumor inhibition. Finally, combining the xCT inhibitor erastin with an anti-PDL1 antibody was more potent in inhibiting lung cancer progression. Therefore, suppression of xCT may overcome resistance to cancer immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones Noqueados , Microambiente Tumoral , Activación de Macrófagos
15.
Adv Sci (Weinh) ; 10(2): e2203973, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442849

RESUMEN

Tumor-associated macrophages (TAMs) play an essential role in tumor progression, metastasis, and antitumor immunity. Ferroptosis has attracted extensive attention for its lethal effect on tumor cells, but the role of ferroptosis in TAMs and its impact on tumor progression have not been clearly defined. Using transgenic mouse models, this study determines that xCT-specific knockout in macrophages is sufficient to limit tumorigenicity and metastasis in the mouse HCC models, achieved by reducing TAM recruitment and infiltration, inhibiting M2-type polarization, and activating and enhancing ferroptosis activity within TAMs. The SOCS3-STAT6-PPAR-γ signaling may be a crucial pathway in macrophage phenotypic shifting, and activation of intracellular ferroptosis is associated with GPX4/RRM2 signaling regulation. Furthermore, that xCT-mediated macrophage ferroptosis significantly increases PD-L1 expression in macrophages and improves the antitumor efficacy of anti-PD-L1 therapy is unveiled. The constructed Man@pSiNPs-erastin specifically targets macrophage ferroptosis and protumoral polarization and combining this treatment with anti-PD-L1 exerts substantial antitumor efficacy. xCT expression in tumor tissues, especially in CD68+ macrophages, can serve as a reliable factor to predict the prognosis of HCC patients. These findings provide further insight into targeting ferroptosis activation in TAMs and regulating TAM infiltration and functional expression to achieve precise tumor prevention and improve therapeutic efficacy.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Activación de Macrófagos , Macrófagos Asociados a Tumores , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Macrófagos Asociados a Tumores/patología , Polaridad Celular , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
17.
Cell Death Dis ; 13(4): 373, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440604

RESUMEN

Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignant tumors globally, and its occurrence and progression are closely related to the poor histological features and complex molecular characteristics among patients. It is urgent to identify specific biomarkers for effective treatment of CRC. In this study, we performed comprehensive experiments to validate the role of xCT expression in CRC tumorigenesis and stemness and confirmed xCT knockdown significantly suppressed the proliferation, migration, and stemness of CRC cells in vitro and effectively inhibited CRC tumorigenesis and metastasis in vivo. In addition, bioinformatic analysis and luciferase assays were used to identify E2F1 as a critical upstream transcription factor of SLC7A11 (the gene encoding for xCT) that facilitated CRC progression and cell stemness. Subsequent RNA sequencing, western blotting, rescue assay, and immunofluorescence assays revealed MELK directly co-expressed with xCT in CRC cells, and its upregulation significantly attenuated E2F1/xCT-mediated tumorigenesis and stemness in CRC. Further molecular mechanism exploration confirmed that xCT knockdown may exert an antitumor effect by controlling the activation of MELK-mediated Akt/mTOR signaling. Erastin, a specific inhibitor of xCT, was also proven to effectively inhibit CRC tumorigenesis and cell stemness. Altogether, our study showed that E2F1/xCT is a promising therapeutic target of CRC that promotes tumorigenesis and cell stemness. Erastin is also an effective antitumoral agent for CRC.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Neoplasias Colorrectales , Proteínas Serina-Treonina Quinasas , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/genética
18.
J Nanobiotechnology ; 20(1): 179, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366904

RESUMEN

Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Ferroptosis , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Quimioembolización Terapéutica/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Microesferas
19.
ACS Appl Mater Interfaces ; 14(18): 20603-20615, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35476429

RESUMEN

In clinic, metastasis is still the main reason for death for cancer patients. Therefore, it is necessary to track cancer metastases accurately, kill cancer cells effectively, and then improve the prognosis of patients with advanced cancer. Therefore, we designed a liposome-based pretargeted system modified with single-stranded DNA and targeting peptide injected in sequence and then assembled in vivo for multimodality imaging-guided pretargeted synergistic therapy of metastatic breast cancer. The pretargeted system is composed of the first liposome, loaded with near-infrared fluorescence imaging (NIR-II) probe downconversion nanoprobes (DCNP) and magnetic resonance imaging (MRI) contrast agent SPIO (L1/C-Lipo/DS), for primary/metastatic tumor MRI/NIR-II dual-modal imaging, and the second liposome, loaded with glucose oxidase (GOx) and doxorubicin (DOX) (L2/C-Lipo/GD), as the therapeutic component. The SPIO in L1/C-Lipo/DS accumulated in the tumor tissue will provide a necessary iron ion for the therapeutic liposome (L2/C-Lipo/GD) to exert the pretargeted ferroptosis therapy to cancer cells. We demonstrate that the DNA-mediated pretargeting strategy can realize the multimodality imaging-guided synergistically enhanced antitumor effect between the two liposomes. This pretargeted and synergistic in vivo assembly nanomedicine strategy for diagnosis and treatment holds clinical translation potential for cancer management.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Medios de Contraste/uso terapéutico , ADN/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Humanos , Liposomas , Imagen por Resonancia Magnética/métodos
20.
Biomaterials ; 284: 121512, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35405577

RESUMEN

Transcatheter arterial chemoembolization (TACE) is widely used for the treatment of advanced hepatocellular carcinoma (HCC). However, the long-term hypoxic microenvironment caused by TACE seriously affects the therapeutic effect of TACE. HIF-2α plays a crucial role on the chronic hypoxia process, which might be an ideal target for TACE therapy. Herein, a multifunctional polyvinyl alcohol (PVA)/hyaluronic acid (HA)-based microsphere (PT/DOX-MS) co-loaded with doxorubicin (DOX) and PT-2385, an effective HIF-2α inhibitor, was developed for enhanced TACE treatment efficacy. In vitro and in vivo studies revealed that PT/DOX-MS had a superior ability to treat HCC by blocking the tumor cells in G2/M phase, prompting cell apoptosis, and inhibiting tumor angiogenesis. The antitumor mechanisms of PT/DOX-MS were possibly due to that the introduction of PT-2385 could effectively inhibit the expression level of HIF-2α in hypoxic HCC cells, thereby down-regulating the expression levels of Cyclin D1, VEGF and TGF-α. In addition, the combination of DOX and PT-2385 could jointly inhibit VEGF expression, which was another reason accounting for the combined anti-cancer effect of PT/DOX-MS. Overall, our study demonstrated that PT/DOX-MS is a promising embolic agent for enhanced HCC treatment via the combined effect of hypoxia microenvironment improvement, chemotherapy, and embolization.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma Hepatocelular/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Hipoxia/terapia , Neoplasias Hepáticas/patología , Microesferas , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA