Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 277
1.
Inorg Chem ; 63(19): 8970-8976, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693870

Wholly distinct from conjugated polymers which are featured by generic charge transfer capability stemming from a conjugated molecular structure, solid nonconjugated polymers mediated charge transport has long been deemed as theoretically impossible because of the deficiency of π electrons along the molecular skeleton, thereby retarding their widespread applications in solar energy conversion. Herein, we first conceptually unveil that intact encapsulation of metal oxides (e.g., TiO2, WO3, Fe2O3, and ZnO) with an ultrathin nonconjugated polyelectrolyte of branched polyethylenimine (BPEI) can unexpectedly accelerate the unidirectional charge transfer to the active sites and foster the defect generation, which contributes to the boosted charge separation and prolonged charge lifetime, ultimately resulting in considerably improved photoelectrochemical (PEC) water oxidation activities. The interfacial charge transport origins endowed by BPEI adornment are elucidated, which include acting as a hole-withdrawing mediator, promoting vacancy generation, and stimulating the directional charge flow route. We additionally ascertain that such charge transport characteristics of BPEI are universal. This work would unlock the charge transfer capability of nonconjugated polymers for solar water oxidation. The nonconjugated insulating polymer was utilized as a charge transport mediator for boosting charge migration and separation over metal oxides toward solar water oxidation.

2.
bioRxiv ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38746314

Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.

3.
RSC Adv ; 14(22): 15730-15741, 2024 May 10.
Article En | MEDLINE | ID: mdl-38746848

Flexible capacitive sensors are widely deployed in wearable smart electronics. Substantial studies have been devoted to constructing characteristic material architectures to improve their electromechanical sensing performance by facilitating the change of the electrode layer spacing. However, the air gaps introduced by the designed material architectures are easily squeezed when subjected to high-pressure loads, resulting in a limited increase in sensitivity over a wide range. To overcome this limitation, in this work, we embed the liquid metal (LM) in the internally interconnected porous structure of a flexible composite foam to fabricate a flexible and high-performance capacitive sensor. Different from the conventional conductive elements filled composite, the incompressible feature of the embedded fluidic LM leads to significantly improved mechanical stability of the composite foam to withstand high pressure loadings, resulting in a wider pressure sensing range from 10 Pa to 260 kPa for our capacitive composite sensor. Simultaneously, the metal conductivity and liquid ductility of the embedded LM endow the as-fabricated capacitive sensor with outstanding mechanical flexibility and pressure sensitivity (up to 1.91 kPa-1). Meanwhile, the LM-embedded interconnected-porous thermoplastic polyurethane/MXene composite sensor also shows excellent reliability over 4000 long-period load cycles, and the response times are merely 60 ms and 110 ms for the loading and unloading processes, respectively. To highlight their advantages in various applications, the as-proposed capacitive sensors are demonstrated to detect human movements and monitor biophysical heart-rate signals. It is believed that our finding could extend the material framework of flexible capacitive sensors and offer new possibilities and solutions in the development of the next-generation wearable electronics.

4.
Brain ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38577773

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor (GEF) that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signaling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor (NMDAR) activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signaling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.

5.
Langmuir ; 40(17): 9144-9154, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38629776

Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO2) and SnIn4S8 Z-scheme composite materials were synthesized and characterized. The synergistic mode of photocatalytic reduction and oxidation leads to the enhanced utilization of e-/h+ pairs. The TiO2/SnIn4S8 exhibited a higher photocatalytic capacity for the simultaneous removal of tetracycline (TC) (20 mg·L-1) and Cr(VI) (15 mg·L-1). The main active substances of TC degradation and Cr(VI) reduction were identified via free radical scavengers and electron paramagnetic resonance (EPR). Additionally, the potential photocatalytic degradation route of TC was thoroughly elucidated through liquid chromatography-mass spectrometry (LC-MS).

6.
Small ; : e2400958, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644328

Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs)n heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs)n photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.

7.
Pak J Med Sci ; 40(4): 589-594, 2024.
Article En | MEDLINE | ID: mdl-38544993

Objective: To compare the clinical outcomes of InterTAN nail and proximal femoral nail antirotation (PFNA) internal fixation for the treatment of intertrochanteric fractures in the elderly. Methods: We retrospectively reviewed the clinical records of 151 elderly patients with intertrochanteric fractures treated in The Second People's Hospital of Hefei from October 2019 to December 2021. Among them, 73 patients had undergone InterTAN (InterTAN group) and 78 patients had undergone PFNA (PFNA group) internal fixation. Operation-related variables (operation time, incision length, intraoperative bleeding volume, hospital stays length, and fracture healing time), complications, and Harris scores were compared between the two groups. Results: The operation time and incision length were shorter and the intraoperative bleeding was less in the PFNA group than in the InterTAN group (all P-values <0.05), but the fracture healing time was longer in the PFNA group (P<0.05). We found similar hospital stays and surgical complications in the two groups (P>0.05). In addition, the Harris hip joint scores were significantly higher in the InterTAN group than in the PFNA group at one, six, and twelve months after the operation (P<0.05). Conclusions: InterTAN and PFNA internal fixation have their own advantages in treating patients with intertrochanteric fractures. InterTAN has better postoperative recovery results, while PFNA has less perioperative trauma. Clinically, InterTAN or PFNA should be selected based on the specific conditions of each patient to maximize the therapeutic benefit of each treatment method.

9.
Int Wound J ; 21(3): e14768, 2024 Mar.
Article En | MEDLINE | ID: mdl-38446012

Colorectal cancer is a common malignant digestive tract tumour with high morbidity and mortality. Early detection, treatment and diagnosis are crucial for preventing and treating colorectal cancer, which develops through multi-stage accumulation and gene participation, affecting tumour marker levels. Chronic wounds can lead to the development of certain cancers, such as colorectal cancer. The prolonged inflammation and tissue repair caused by chronic wounds can trigger cellular changes, potentially promoting cancerous cell growth in the colon. The formation and progression of colorectal cancer involve changes in tumour markers, such as carcinoembryonic antigen (CEA), sugar chain antigen 19-9 (CA199) and CA125. This study explores the clinical application value of a stool routine combined with serum tumour marker detection in diagnosing colorectal cancer. The experiment team examined the clinical information of 56 colorectal cancer patients alongside a control group of 56 healthy patients. Distinct stool characteristics and heightened occult blood rates were evident in colorectal cancer cases. The combined approach integrating stool routine and serum tumour markers improved diagnostic accuracy, displaying enhanced sensitivity and specificity compared with individual markers or stool routines alone. Bioinformatics analysis indicated increased CEA and CA125 levels in colorectal cancer tissues versus normal tissues, hinting at potential prognostic implications. Exploring wound-healing genes like Vascular Endothelial Growth Factor A (VEGFA), Tumour Protein 53 (TP53) and Transforming Growth Factor Alpha (TGFA) revealed heightened expression in colorectal cancer, suggesting their potential role in disease progression. These markers showed associations with various immune cell types, suggesting their impact within the tumour microenvironment (p < 0.05). Single-cell RNA sequencing data highlighted varying CEA expressions across different cell populations in colorectal cancer. The findings indicated that integrating clinical assessments with accurate biomarkers may provide valuable insights into prognostic implications.


Biomarkers, Tumor , Colorectal Neoplasms , Humans , Prognosis , Biomarkers, Tumor/genetics , Carcinoembryonic Antigen , Vascular Endothelial Growth Factor A , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Tumor Microenvironment
10.
J Exp Neurol ; 5(2): 42-64, 2024.
Article En | MEDLINE | ID: mdl-38434588

Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aß) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aß production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aß in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aß represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aß or Tau and the modest success of recent trials using Aß monoclonal antibodies, has led to a reappraisal of the view that Aß accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aß accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.

11.
Cell Prolif ; 57(5): e13591, 2024 May.
Article En | MEDLINE | ID: mdl-38319150

Highly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC. PBMCs from seven HAGC patients, six normal advanced gastric cancer (NAGC) patients, and five healthy individuals were analysed by single-cell RNA sequencing. The expression of genes of interest was validated by bulk RNA-sequencing and ELISA. We found a massive expansion of neutrophils in PBMCs of HAGC. These neutrophils are activated, but immature. Besides, mononuclear phagocytes exhibited an M2-like signature and T cells were suppressed and reduced in number. Analysis of cell-cell crosstalk revealed that several signalling pathways involved in neutrophil to T-cell suppression including APP-CD74, MIF-(CD74+CXCR2), and MIF-(CD74+CD44) pathways were increased in HAGC. NETosis-associated genes S100A8 and S100A9 as well as VEGF, PDGF, FGF, and NOTCH signalling that contribute to DIC development were upregulated in HAGC too. This study reveals significant changes in the distribution and interactions of the PBMC subsets and provides valuable insight into the immune response in patients with HAGC. S100A8 and S100A9 are highly expressed in HAGC neutrophils, suggesting their potential to be used as novel diagnostic and therapeutic targets for HAGC.


Leukocytes, Mononuclear , Sequence Analysis, RNA , Single-Cell Analysis , Stomach Neoplasms , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/blood , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Neutrophils/metabolism , Neutrophils/immunology , Male , Female , Middle Aged , Signal Transduction , Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Chem Sci ; 15(8): 2898-2913, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38404395

The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems via a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, i.e., poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe2, CoSe2, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO2-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.

13.
Geroscience ; 46(3): 3135-3147, 2024 Jun.
Article En | MEDLINE | ID: mdl-38200357

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.


Brain , Dual-Specificity Phosphatases , Middle Cerebral Artery , Animals , Rats , Aging , Brain/blood supply , Cognition , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Middle Cerebral Artery/metabolism
15.
Inorg Chem ; 63(2): 1471-1479, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38173240

Atomically precise metal nanoclusters (NCs) have been deemed as a new generation of metal nanomaterials because of their characteristic atomic stacking fashion, quantum confinement effect, and multitude of active sites. The discrete molecular-like energy band structure of metal NCs endows them with photosensitization capability for light harvesting and conversion. However, applications of metal NCs in photoelectrocatalysis are limited by the ultrafast charge recombination and unfavorable stability, impeding the construction of metal NC-based photosystems. In this work, we elaborately crafted multilayered metal oxide (MO)/(metal NCs/insulating polymer)n photoanodes by a facile layer-by-layer (LbL) assembly technique. In these well-defined heterostructured photoanodes, glutathione (GSH)-wrapped metal NCs (Agx@GSH, Ag9@GSH6, Ag16@GSH9, and Ag31@GSH19) and an insulating poly(allylamine hydrochloride) (PAH) layer are alternately deposited on the MO substrate in a highly ordered integration mode. We found that photoelectrons of metal NCs can be tunneled into the MO substrate via the intermediate ultrathin insulating polymer layer by stimulating the tandem charge transfer route, thus facilitating charge separation and boosting photoelectrochemical water oxidation performances. Our work would open a new frontier for judiciously regulating directional charge transport over atomically precise metal NCs for solar-to-hydrogen conversion.

16.
Molecules ; 29(2)2024 Jan 15.
Article En | MEDLINE | ID: mdl-38257333

In this work, a series of urchin-like Ce(HCOO)3 nanoclusters were synthesized via a facile and scalable microwave-assisted method by varying the irradiation time, and the structure-property relationship was investigated. The optimization of the reaction time was performed based on structural characterizations and electrochemical performances, and the Ce(HCOO)3-210 s sample shows a specific capacitance as high as 132 F g-1 at a current density of 1 A g-1. This is due to the optimal mesoporous hierarchical structure and crystallinity that are beneficial to its conductivity, offering abundant Ce3+/Ce4+ active sites and facilitating the transportation of electrolyte ions. Moreover, an asymmetric supercapacitor based on Ce(HCOO)3//AC was fabricated, which delivers a maximum energy density of 14.78 Wh kg-1 and a considerably high power density of 15,168 W kg-1. After 10,000 continuous charge-discharge cycles at 3 A g-1, the ASC device retains 81.3% of its initial specific capacitance. The excellent comprehensive electrochemical performance of this urchin-like Ce(HCOO)3 offers significant promise for practical supercapacitor applications.

17.
Biomed Opt Express ; 15(1): 479-490, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38223171

Traumatic spinal cord injury (SCI) can lead to permanent neurological impairment, underscoring the urgency of regular therapeutic intervention and monitoring. In this study, we propose a new strategy for monitoring spinal cord injury through serum based on high-resolution THz attenuated total reflection frequency domain spectroscopy (THz-ATR-FDS). We demonstrated serum spectral differences at different time points after experimental SCI in rats. We also studied the relationship between serum lipid concentration and the time of SCI, which revealed the potential of lipid molecules as biomarkers of SCI. In addition, based on the principal component analysis (PCA) and least squares regression (LSR) models, the quantitative relationship between the refractive index spectrum and lipid concentration in serum was automatically analyzed. This work highlights terahertz spectroscopy as a promising tool for label-free, periodic, and efficient monitoring of SCI.

18.
Small ; 20(7): e2307619, 2024 Feb.
Article En | MEDLINE | ID: mdl-37803332

Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.

19.
Inorg Chem ; 63(1): 870-880, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38117690

Solar-powered photocatalytic conversion of CO2 to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO2 reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO2 reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO2 adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO2 conversion. Based on the intermediates probed during the photocatalytic CO2 reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

20.
bioRxiv ; 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38106132

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.

...