Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Adv Sci (Weinh) ; : e2402162, 2024 May 06.
Article En | MEDLINE | ID: mdl-38708715

High-performance soft magnetic materials are important for energy conservation and emission reduction. One challenge is achieving a combination of reliable temperature stability, high resistivity, high Curie temperature, and high saturation magnetization in a single material, which often comes at the expense of intrinsic coercivity-a typical trade-off in the family of soft magnetic materials with homogeneous microstructures. Herein, a nanostructured FeCoNiSiAl complex concentrated alloy is developed through a hierarchical structure strategy. This alloy exhibits superior soft magnetic properties up to 897 K, maintaining an ultra-low intrinsic coercivity (13.6 A m-1 at 297 K) over a wide temperature range, a high resistivity (138.08 µΩ cm-1 at 297 K) and the saturation magnetization with only a 16.7% attenuation at 897 K. These unusual property combinations are attributed to the dual-magnetic-state nature with exchange softening due to continuous crystal ordering fluctuations at the atomic scale. By deliberately controlling the microstructure, the comprehensive performance of the alloy can be tuned and controlled. The research provides valuable guidance for the development of soft magnetic materials for high-temperature applications and expands the potential applications of related functional materials in the field of sustainable energy.

2.
Talanta ; 275: 126118, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38688087

Nitrite (NO2-) has been widely recognized by the international community as an important substance affecting water quality safety and human health, and the detection of NO2- has always been a hot topic for researchers. Fluorescent probe method is an emerging and ideal way for detecting NO2-. Due to the high dependence of the reported reactive NO2- fluorescent probes on strong acidic systems, using the idea of photochemistry, a fluorescence analysis method for detecting NO2- was proposed in this work to change the necessity of strong acidic solutions in probe detection process. A 365 nm UV-LED lamp was used to irradiate NO2- in aqueous solution to convert it into hydroxyl radicals (HO·), and capture the photodegradation product of NO2- using coumarin-3-carboxylic acid as probe 3-CCA that can react with HO· to generate only one type of strong fluorescent substance. This probe has excellent photostability, selectivity, and anti-interference ability, and can realize the quantitative detection of NO2- (0-15 µM) in pure aqueous solution with pH of 7.4. In addition, its application in actual water samples is also satisfactory, with a recovery rate of (85.91 %-107.30 %). Importantly, we hope that this photolysis strategy can open up the novel thinking to develop suitable fluorescent probes for the analysis and detection of some hardly detected analytes.

3.
Nat Commun ; 14(1): 6367, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37821464

Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.

4.
Int J Biol Macromol ; 248: 125813, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37479198

Fish skin gelatin is an important functional product used in food, medicine and other industries. However, the structure and function of gelatins extracted with different methods differ significantly, thus limiting its production and application. This study used dry-salting, wet-salting, pepsin, acid and heat methods to extract gelatins from the skins of tilapia, grass carp and sea perch. Then, their structural characteristics (micro- and ultra-structure, amyloid-like fibril, etc.) and functional properties (viscosity, emulsifying performance, antioxidant abilities, etc.) were analyzed, and interaction between gelatin components were also explored. According to the results, the gelatins extracted with dry-salting and wet-salting methods had better reticular structure, larger fiber length/height, and higher viscosity properties, emulsifying and antioxidant capacity. The gelatin extracted by applying heat has the highest gel strength, and the gelatin extracted using pepsin had better thermal stability, water absorption capacity, and fat absorption capacity. Further analysis of component interaction showed that 11 types of collagens detected in the gelatins might promote the conversion of collagen to gelatin through self-assembly ability. The co-assembly of different types of collagens enhanced the properties of gelatin. Decorin had a positive effect on gelatin network structure, but Metallopeptidase inhibited the formation of network structure. Different methods can produce personalized gelatin products according to specific needs. The mining of component interaction would reveal the mechanism of gelatin formation and promote the development of gelatin synthetic biology.


Antioxidants , Gelatin , Animals , Gelatin/chemistry , Antioxidants/pharmacology , Pepsin A , Chemical Phenomena , Collagen
...