Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563260

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

2.
Mater Horiz ; 11(7): 1808-1816, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38323653

Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec-1, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.

3.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1940-1945, 2018 May.
Article Zh | MEDLINE | ID: mdl-29902908

To investigate the pharmacokinetic characteristics of active constituents of Guhong injection in rats with cerebral ischemia reperfusion injury. The middle cerebral artery occlusion (MCAO) model was established in our studies, and then all the rats received iv administration of Guhong injection (2.1 mL·kg⁻¹). The blood concentrations of aceglutamide and hydroxysafflor yellow A (HSYA) were determined by high performance liquid chromatography (HPLC) method at different time points. The concentration-time curves were drawn and pharmacokinetic data were obtained by DAS 3.2.6 software. The results showed that aceglutamide and HSYA showed good linear relationship within the ranges of 1.5-500 mg·L⁻¹ (R²=0.997 5) and 0.33-40 mg·L⁻¹ (R²=0.998 9) respectively. This quantitative method showed a high recovery rate, good precision and stability. The main pharmacokinetics parameters of t1/2α, t1/2ß, CL1, CL2, AUC0-t, AUC0-∞, Vd1, and Vd2 were (0.139±0.007) and (0.155±0.017) h, (0.803±0.046) and (2.233±0.410) h, (0.016±0) and (0.149±0.018) L·h⁻¹·kg⁻¹, (0.015±0.001) and (0.446±0.016) L·h⁻¹·kg⁻¹, (133.335±3.844) and (9.298±0.179) mg·h·L⁻¹, (143.851±3.595) and (14.464±1.451) mg·h·L⁻¹, (0.009±0.001) and (0.223±0.007) L·kg⁻¹, (0.006±0.001) and (0.212±0.032) L·kg⁻¹, respectively. The results showed that the established HPLC method was highly specific, and could be used for the simultaneous detection of aceglutamide and HSYA of Guhong injection in MCAO rats, which was conducive to pharmacokinetic studies. Pharmacokinetic data and parameters could provide reference for continuous administration and interval administration of the drug.


Brain Ischemia , Infarction, Middle Cerebral Artery , Animals , Glutamine/analogs & derivatives , Plant Extracts , Rats , Rats, Sprague-Dawley
...