Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Total Environ ; 919: 170840, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340828

RESUMEN

Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.


Asunto(s)
Proteoma , Ríos , Masculino , Animales , Femenino , Proteoma/metabolismo , Estaciones del Año , Proteómica/métodos , Péptidos , Trucha/metabolismo , Proteínas de Peces , Músculos/química
2.
Molecules ; 28(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836640

RESUMEN

Sugar carbonyl groups interact with protein amino groups, forming toxic components referred to as advanced glycation end products (AGEs). The glycation system (BSA, a model protein, and fructose) was incubated for five weeks at 37 °C in the presence and absence of Stevia leaf extract. The results indicated that the leaf extract (0.5 mg/mL) decreased the incidence of browning (70.84 ± 0.08%), fructosamine (67.27 ± 0.08%), and carbonyl content (64.04 ± 0.09%). Moreover, we observed an 81 ± 8.49% reduction in total AGEs. The inhibition of individual AGE (argpyrimidine, vesper lysine, and pentosidine) was ~80%. The decrease in the protein aggregation was observed with Congo red (46.88 ± 0.078%) and the Thioflavin T (31.25 ± 1.18%) methods in the presence of Stevia leaf extract. The repercussion of Stevia leaf extract on DNA glycation was examined using agarose gel electrophoresis, wherein the DNA damage was reversed in the presence of 1 mg/mL of leaf extract. When the HDF cell line was treated with 0.5 mg/mL of extract, the viability of cells decreased by only ~20% along with the same cytokine IL-10 production, and glucose uptake decreased by 28 ± 1.90% compared to the control. In conclusion, Stevia extract emerges as a promising natural agent for mitigating glycation-associated challenges, holding potential for novel therapeutic interventions and enhanced management of its related conditions.


Asunto(s)
Stevia , Agentes Antiglicación , Azúcares , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Productos Finales de Glicación Avanzada , Hojas de la Planta
3.
Molecules ; 28(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37764478

RESUMEN

Plant bioactive phenolic metabolites have recently attracted the attention of researchers due to their numerous health advantages. Therefore, this study aimed to investigate with advanced techniques the bioactive metabolites and antioxidant and antidiabetic capacity of four unconventional edible plant leaves: lemongrass (Cymbopogon citratus (DC.) Stapf), chicory (Cichorium intybus L.), moringa (Moringa oleifera Lam.), and ryegrass (Lolium perenne L.). The extraction process was optimized using different solvents. These plants' phenolic composition, identification, and characterization have been determined herein using LCESI-QTOF-MS/MS. This research identified 85 phenolic compounds, including 24 phenolic acids, 31 flavonoids, 7 stilbenes and lignans, and 17 other metabolites. Moreover, the study determined that moringa has the highest total phenolic content (TPC; 18.5 ± 1.01 mg GAE/g), whereas ryegrass has the lowest (3.54 ± 0.08 mg GAE/g) among the selected plants. It seems that, compared to other plants, moringa was found to have the highest antioxidant potential and antidiabetic potential. In addition, twenty-two phenolic compounds were quantified in these chosen edible plants. Rosmarinic acid, chlorogenic acid, chicoric acid, ferulic acid, protocatechuic acid, and caffeic acid were the most abundant phenolic acids. In silico molecular docking was also conducted to investigate the structure-function relationship of phenolic compounds to inhibit the alpha-glucosidase. Finally, the simulated pharmacokinetic characteristics of the most common substances were also predicted. In short, this investigation opens the way for further study into these plants' pharmaceutical and dietary potential.

5.
Sci Rep ; 13(1): 10134, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349327

RESUMEN

Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.


Asunto(s)
Cyprinidae , Ecosistema , Animales , Masculino , Femenino , Trucha , Cromatografía Liquida , Proteómica/métodos , Citocromos b , Espectrometría de Masas en Tándem , Proteínas de Peces/genética , Glucógeno Sintasa Quinasas
6.
Front Physiol ; 14: 989442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035664

RESUMEN

Schizothorax esocinus, commonly known as snow trout, is one of the main contributors of food and livelihood in the colder zone of Himalayan region. The comprehensive information on its hematological and serum biochemical reference intervals is not reported yet. In the present study an attempt has been made to elucidate the hematological and serum biochemical reference intervals of S. esocinus from River Jhelum using protocols of the American Society of Veterinary Clinical Pathology (ASVCP). Wild fish were sampled over a period of 2 years from the pollution free sites of river Jhelum. Fish blood was harvested through caudal venipuncture and hemato-biochemical analysis performed thereof. Data values from a total of healthy 432 adult fish specimens (216 male, 216 female) were systematically recorded. The reference intervals for hematological and serum biochemical parameters of S. esocinus were established using Reference Value Advisor software v 2.1. RIs for hematological and serum analytes ranged as: hemoglobin (Hb) 78.38-116.35 (g/L); white blood cells (WBC) 10-20 (×109/L); red blood cells (RBC) 1.30-2.15 (×1012/L); packed cell volume 27.00-39.45 (%); total protein 39.21-61.62 (g/L); albumin 8.20-22.02 (g/L); globulin 27.58-49.55 (g/L); glucose 3.25-7.18 (mmol/L); urea 0.96-2.38 (mmol/L); cholesterol 3.80-6.90 (mmol/L). The study also depicted that certain blood measurands were influenced with respect to sex. Significantly (p < 0.05) higher values of Hb, red blood cells count and serum glucose were noted in male as compared to female which, on the other hand, registered higher white blood cells count and serum cholesterol level (Mann Whitney U test, p < 0.05). The work, therefore, provides baseline information on hematological and serum biochemical analytes of this species which holds high commercial importance. RIs reported here can help monitor the health status of fish by improving the use of non-lethal diagnostic methods in piscine medicine.

7.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985647

RESUMEN

Hepatitis E virus (HEV) is the notable causative agent of acute and chronic hepatic, renal, pancreatic, neurological, and hematopoietic blood cell infections with high risk in immunocompromised patients. Hepatic failure is mostly documented among adults, pregnant women, and patients with preexisting liver disease. HEV is a positive sense RNA virus of 7.2 kb genome size with typically three open reading frames (ORFs) which play essential roles in viral replication, genome assembly, and transcription. The mutational substitution in the viral RNA genome makes more it difficult to understand the actual relationship in the host-virus association. ORFs of HEV encode different structural and non-structural proteins and one of them is the capsid protein which is coded by ORF2. The capsid protein mediates the encapsulation of the viral genome as well as being involved in virion assembly. In the current study, the ligand-based docking approach was employed to inhibit the active amino acids of the viral capsid protein. Depending upon S-score, ADMET profiling, and drug scanning, the top ten tetrapeptides were selected as potential drug candidates with no toxicity counter to HEV receptor protein. The S-score or docking score is a mathematical function which predicts the binding affinities of docked complexes. The binding affinity of the predicted drug-target complexes helps in the selectivity of the desired compound as a potential drug. The best two selected peptides (i.e., TDGH with S-score of -8.5 and EGDE with S-score of -8.0) interacted with the active site amino acids of the capsid protein (i.e., Arg399, Gln420, and Asp444). The molecular dynamics simulations of RMSD trajectories of TDGH-capsid protein and EDGE-capsid protein have revealed that both docked complexes were structurally stable. The study revealed that these tetrapeptides would serve as strong potential inhibitors and a starting point for the development of new drug molecules against the HEV capsid protein. In future, in vivo studies are needed to explore selected peptides as potential drug candidates.


Asunto(s)
Virus de la Hepatitis E , Embarazo , Humanos , Femenino , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/metabolismo , Proteínas de la Cápside/metabolismo , Péptidos/metabolismo , Hígado/metabolismo , Aminoácidos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-36231984

RESUMEN

Cadmium toxicity is one of the deleterious abiotic factors that reduce wheat production. Two different cultivars (Akbar and Dilkash) were compared for their cadmium (0, 40 and 80 mg/kg) tolerance and responses towards Bacillus subtilis NA2, Aspergillus niger PMI-118 and L-proline. Both microbes were tested for heavy metal tolerance and production of various plant hormones and biological active enzyme characteristics under normal and cadmium stress. A completely randomized design (two cultivars × four treatments × three cadmium levels × three replicates) was adopted using distilled water as a control. The growth promotion potential of these strains under cadmium stress was determined by N-fixation, IAA synthesis, P-solubilization, amylase and proteases production. A pot experiment under controlled conditions was conducted to evaluate the effect of bacteria, fungi, and L-proline under cadmium stress. It was indicated from the result that plant biomass (46.43%), shoot length (22.40%), root length (25.06%), chlorophyll (17.17%), total sugars (27.07%), total proteins (86.01%) and ascorbic acid (83.27%) were improved with inoculation under control and cadmium stress. The accumulation of total flavonoids (48.64%), total phenolics (24.88%), hydrogen peroxide (53.96%) and activities of antioxidant enzymes CAT (26.37%) and APX (43.71%) were reduced in the plants treated with bacteria, fungi and L-proline than those under control. With parallel aids, Bacillus subtilis NA2 showed a higher cadmium tolerance and plant growth stability as compared to Aspergillus niger PMI-118 and L-proline and may be adopted in the future.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Amilasas , Antioxidantes/metabolismo , Ácido Ascórbico/farmacología , Aspergillus niger , Bacillus subtilis , Biodegradación Ambiental , Cadmio/metabolismo , Clorofila/metabolismo , Flavonoides/farmacología , Peróxido de Hidrógeno/metabolismo , Metales Pesados/metabolismo , Péptido Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacología , Contaminantes del Suelo/análisis , Azúcares/metabolismo , Triticum/metabolismo , Agua/metabolismo
9.
PLoS One ; 17(3): e0265231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275977

RESUMEN

Larrea tridentata (Sesse and Moc. ex DC.) Coville (family: Zygophyllaceae) is an aromatic evergreen shrub with resin-covered leaves, known to use in traditional medicine for diverse ailments. It also has immense pharmacological significance due to presence of powerful phenylpropanoids antioxidant, nordihydroguaiaretic acid (NDGA). The RNA sequence/transcriptome analyses connect the genomic information into the discovery of gene function. Hence, the acquaint analysis of L. tridentata is in lieu to characterize the transcriptome, and to identify the candidate genes involved in the phenylpropanoid biosynthetic pathway. To gain molecular insight, the bioinformatics analysis of transcriptome was performed. The total bases covered 48,630 contigs of length greater than 200 bp and above came out to 21,590,549 with an average GC content of 45% and an abundance of mononucleotide, SSR, including C3H, FAR1, and MADS transcription gene families. The best enzyme commission (EC) classification obtained from the assembled sequences represented major abundant enzyme classes e.g., RING-type E3 ubiquitin transferase and non-specific serine/threonine protein kinase. The KEGG pathway analysis mapped into 377 KEGG different metabolic pathways. The enrichment of phenylpropanoid biosynthesis pathways (22 genes i.e., phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, cinnamoyl-CoA reductase, beta-glucosidase, shikimate O-hydroxycinnamoyl transferase, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase, cinnamyl-alcohol dehydrogenase, peroxidase, coniferyl-alcohol glucosyltransferase, caffeoyl shikimate esterase, caffeoyl-CoA O-methyltransferase, caffeate O-methyltransferase, coniferyl-aldehyde dehydrogenase, feruloyl-CoA 6-hydroxylase, and ferulate-5-hydroxylase), and expression profile indicated antioxidant, anti-arthritic, and anticancer properties of L. tridentata. The present results could provide an important resource for squeezing biotechnological applications of L. tridentata.


Asunto(s)
Larrea , Transcriptoma , Antioxidantes , Redes y Vías Metabólicas/genética , Oxigenasas de Función Mixta
10.
Nanomaterials (Basel) ; 12(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35010111

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.

11.
J King Saud Univ Sci ; 34(2): 101810, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35002180

RESUMEN

The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.

12.
J King Saud Univ Sci ; 34(2): 101773, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955621

RESUMEN

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world jeopardizing the global economy and health. The rapid proliferation and infectivity of the virus can be attributed to many accumulating mutations in the spike protein leading to continuous generation of variants. The spike protein is a glycoprotein that recognizes and binds to cell surface receptor known as angiotensin-converting enzyme 2 (ACE2) leading to the fusion of the viral and host cell membranes and entry into the host cells. These circulating variants in the population have greatly impacted the virulence, transmissibility, and immunological evasion of the host. The present study is aimed at understanding the impact of the major mutations (L452R, T478K and N501Y) in the receptor-binding domain (RBD) of spike protein and their consequences on the binding affinity to human ACE2 through protein-protein docking and molecular dynamics simulation approaches. Protein-protein docking and Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) binding free energy analysis reveal that the spike mutants-L452R, T478K and N501Y have a higher binding affinity to human ACE2 as compared to the native spike protein. The increase in the number of interface residues, interface area and intermolecular forces such as hydrogen bonds, salt bridges and non-bonded contacts corroborated with the increase in the binding affinity of the spike mutants to ACE2. Further, 75 ns all-atom molecular dynamics simulation investigations show variations in the geometric properties such as root mean square deviation (RMSD), radius of gyration (Rg), total solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs) in the mutant spike:ACE2 complexes with respect to the native spike:ACE2 complex. Therefore, the findings of this study unravel plausible molecular mechanisms of increase in binding affinity of spike mutants (L452R, T478K and N501Y) to human ACE2 leading to higher virulence and infectivity of emerging SARS-CoV-2 variants. The study will further aid in designing novel therapeutics targeting the interface residues between spike protein and ACE2 receptor.

13.
Curr Pharm Biotechnol ; 23(7): 959-969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34097590

RESUMEN

BACKGROUND: There has been tremendous pressure on healthcare facilities globally due to the recent emergence of novel coronavirus infection known as COVID-19 and its rapid spread across the continents. The lack of effective therapeutics for the management of the pandemic calls for the discovery of new drugs and vaccines. OBJECTIVE: In the present study, a chemical library was screened for molecules against three coronavirus 3CL-like protease enzymes (SARS-CoV-2 3CLpro, SARS-CoV 3CLpro and MERS-CoV 3CLpro), which are a key player in the viral replication cycle. METHODS: Extensive computational methods such as virtual screening and molecular docking were employed in this study. RESULTS: Two lead molecules, ZINC08825480 (4-bromo-N'-{(E)-[1-phenyl-3-(pyridin-3-yl)-1H-pyrazol- 4-yl]methylidene}benzene-1-sulfonohydrazide) and ZINC72009942 (N-[[2-[[(3S)-3-methyl-1-piperidyl] methyl]phenyl]methyl]-6-oxo-1-(p-tolyl)-4,5-dihydro-1,2,4-triazine-3-carboxamide), were identified with better affinity with the three target enzymes as compared to the approved antiviral drugs. Both the lead molecules possessed favorable drug-like properties, fit well into the active site pocket close to His- Cys dyad and showed a good number of hydrogen bonds with the backbone as well as side chains of key amino acid residues. CONCLUSION: Thus, the present study offers two novel chemical entities against coronavirus infections which can be validated through various biological assays.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Antivirales/química , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2
14.
Saudi J Biol Sci ; 29(1): 53-64, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34548836

RESUMEN

Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (ß-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from -5 to -6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from -6.9 to -9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from -9.7 to -12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.

15.
Front Genet ; 13: 1047436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726718

RESUMEN

Traditionally, species of fish are identified based on morphological characteristics. Although these taxonomic descriptions are essential, there are cases where the morphological characters distinguishing these species show marginal differences. For instance, in the Poonch River in the Himalayas, there are 21 species, out of which some are morphologically similar, and the taxonomic distinction between these species is unclear. Therefore, in this study, we used sequences from two mitochondrial genes, Cytochrome b (Cyt b) and a larger ribosomal subunit (16S rRNA), as well as the morphological analysis to address any taxonomic ambiguities among the six fish species. Maximum Likelihood results revealed that all the species were clustered according to their families and genera. The phenotypic analysis also supported this statement, as all the species of different genera like Schizothorax, Tor, Garra, Traqilabeo, and Glyptothorax are grouped in their particular cluster, it shows that species of a separate class share a mutual morphological characteristic. While genetic analyses of these species suggest nucleotide diversity (p) and haplotype diversity, with Hd values as 0.644 for Cyt b and 0.899 for 16S rRNA, confirming the rich genetic diversity in the river. Overall, we recommend that the integrative approach in delimiting the fish species is more effective than the individual one and can be used to rapidly diagnose a species and understand the evolutionary relationship between the species.

16.
Saudi J Biol Sci ; 28(12): 7190-7201, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34867022

RESUMEN

The diversity of natural phytochemicals represents an unlimited source for discovery and development of new drugs. Ochradenus arabicus, (family: Resedaceae) a notable medicinal plant displays a high content of flavonoid glycosides. This study investigates a possible preventative role of zinc nanoparticles biosynthesized by O. arabicus leaf extracts (OAZnO NPs) in limiting genotoxicity and cytotoxicity caused by indole acetic acid (IAA) in laboratory mice. ZnO NPs were synthesized using O. arabicus leaf extracts and characterized with UV-visible spectroscopy, scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The mice were randomly distributed into the following six groups: control, OAZnO NPs treated (10 mg/kg BW), IAA treated (50 mg/kg BW); simultaneous treatment, pre-treatment, and post-treatment. Reactive oxygen species (ROS), DNA damage, chromosome aberration, and apoptosis were analyzed as toxicity endpoints. IAA exposure significantly induced production of ROS, DNA damage, apoptosis, chromosome aberrations, and micronuclei. Pre-, post-, and simultaneous treatment with OAZnO NPs ameliorated the damage caused by IAA exposure. Exposure to OAZnO NPs alone caused no toxicity for any endpoint based on comparison to controls. This study demonstrated that IAA-induced cytotoxic damage in mice could be ameliorated by treatment with OAZnO NPs. These findings require additional verification in mechanistic and in vitro studies.

17.
PLoS One ; 16(7): e0254035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260631

RESUMEN

Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (ß-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.


Asunto(s)
Antineoplásicos , Ficus , Simulación del Acoplamiento Molecular , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
18.
Saudi J Biol Sci ; 28(7): 3768-3775, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34220230

RESUMEN

Adenium obesum (Forssk.) Roem. & Schult. belonging to the family Apocynaceae, is remarkable for its horticultural and ornamental values, poisonous nature, and medicinal uses. In order to have understanding of cp genome characterization of highly valued medicinal plant, and the evolutionary and systematic relationships, the complete plastome / chloroplast (cp) genome of A. obesum was sequenced. The assembled cp genome of A. obesum was found to be 154,437 bp, with an overall GC content of 38.1%. A total of 127 unique coding genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes. The repeat structures were found to comprise of only mononucleotide repeats. The SSR loci are compososed of only A/T bases. The phylogenetic analysis of cp genomes revealed its proximity with Nerium oleander.

19.
Biomed Res Int ; 2021: 8853056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258282

RESUMEN

The recent outbreak of the deadly coronavirus disease 19 (COVID-19) pandemic poses serious health concerns around the world. The lack of approved drugs or vaccines continues to be a challenge and further necessitates the discovery of new therapeutic molecules. Computer-aided drug design has helped to expedite the drug discovery and development process by minimizing the cost and time. In this review article, we highlight two important categories of computer-aided drug design (CADD), viz., the ligand-based as well as structured-based drug discovery. Various molecular modeling techniques involved in structure-based drug design are molecular docking and molecular dynamic simulation, whereas ligand-based drug design includes pharmacophore modeling, quantitative structure-activity relationship (QSARs), and artificial intelligence (AI). We have briefly discussed the significance of computer-aided drug design in the context of COVID-19 and how the researchers continue to rely on these computational techniques in the rapid identification of promising drug candidate molecules against various drug targets implicated in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The structural elucidation of pharmacological drug targets and the discovery of preclinical drug candidate molecules have accelerated both structure-based as well as ligand-based drug design. This review article will help the clinicians and researchers to exploit the immense potential of computer-aided drug design in designing and identification of drug molecules and thereby helping in the management of fatal disease.


Asunto(s)
Antivirales/química , Inteligencia Artificial , Tratamiento Farmacológico de COVID-19 , Diseño de Fármacos , Descubrimiento de Drogas , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
20.
Phytother Res ; 35(11): 6170-6180, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33908658

RESUMEN

It is widely known that breast cancer cells eventually develop resistance to hormonal drugs and chemotherapies, which often compromise fertility. This study aimed to investigate the effect of the flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl (KARP), on 1) the viability of MCF-7 breast cancer cells and 2) ovarian function in rats. A dose-dependent decrease in MCF-7 cell survival was observed, and the IC50 value was found to be 48 µg/ml. Cells in the control group or those exposed to increasing concentrations of KARP experienced a similar generation of reactive oxygen species and induction of apoptosis. For the rats, estradiol levels correlated negatively to KARP dosages, although a recovery was obtained at administration of 30 mg/kg per day. Noteworthily, when compared against the control, this dosage led to significant increases in mRNA levels for CYP19, CYP17a, CCND2, GDF9, and INSL3 among the treatment groups, and ER1 and ER2 mRNA levels decreased in a dose-dependent manner. KARP shows great promise as an ideal therapy for breast cancer patients since it induced apoptosis and autophagy in cancerous cells without harming fertility in our animal model. Future investigations on humans are necessary to substantiate these findings and determine its efficacy as a general line of treatment.


Asunto(s)
Neoplasias de la Mama , Flavonoides , Animales , Apoptosis , Aromatasa/genética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Ciclina D2 , Femenino , Factor 9 de Diferenciación de Crecimiento/genética , Humanos , Insulina/genética , Quempferoles/farmacología , Proteínas/genética , Ratas , Esteroide 17-alfa-Hidroxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...