Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
2.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281682

RESUMEN

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Asunto(s)
Complejo 4 de Proteína Adaptadora , Proteínas Relacionadas con Receptor de LDL , Paraplejía Espástica Hereditaria , Animales , Humanos , Ratones , Complejo 4 de Proteína Adaptadora/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Células HeLa , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores de Superficie Celular , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
3.
bioRxiv ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187774

RESUMEN

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes protein export from the trans -Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1 -knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1 -KO mice display increased Golgi localization of ApoER2. Furthermore, hippocampal neurons from Ap4e1 -KO mice and AP4M1 -KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. Altogether, this work establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.

4.
PLoS One ; 14(5): e0213127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31120873

RESUMEN

Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.


Asunto(s)
Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Secuencia de Bases , Sitios de Unión , Biomarcadores , Línea Celular Tumoral , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/farmacología
5.
PLoS One ; 9(4): e93672, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705369

RESUMEN

ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal/fisiología , Nexinas de Clasificación/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Escherichia coli , Citometría de Flujo , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Lentivirus , Neuronas/metabolismo , Ratas , Proteína Reelina
6.
Traffic ; 14(7): 823-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23593972

RESUMEN

Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE.


Asunto(s)
Endosomas/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Receptores de LDL/metabolismo , Nexinas de Clasificación/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Perros , Células HEK293 , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Células de Riñón Canino Madin Darby , Ratones , Datos de Secuencia Molecular , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores de LDL/química , Receptores de LDL/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
7.
Biol Res ; 44(1): 89-105, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720686

RESUMEN

Since the discovery of the low-density lipoprotein receptor (LDLR) and its association with familial hypercholesterolemia in the early 1980s, a family of structurally related proteins has been discovered that has apolipoprotein E as a common ligand, and the broad functions of its members have been described. LRP2, or megalin, is a member of the LDLR family and was initially called gp330. Megalin is an endocytic receptor expressed on the apical surface of several epithelial cells that internalizes a variety of ligands including nutrients, hormones and their carrier proteins, signaling molecules, morphogens, and extracellular matrix proteins. Once internalized, these ligands are directed to the lysosomal degradation pathway or transported by transcytosis from one side of the cell to the opposite membrane. The availability of megalin at the cell surface is controlled by several regulatory mechanisms, including the phosphorylation of its cytoplasmic domain by GSK3, the proteolysis of the extracellular domain at the cell surface (shedding), the subsequent intramembrane proteolysis of the transmembrane domain by the gamma-secretase complex, and exosome secretion. Based on the important roles of its ligands and its tissue expression pattern, megalin has been recognized as an important component of many pathological conditions, including diabetic nephropathy, Lowe syndrome, Dent disease, Alzheimer's disease (AD) and gallstone disease. In addition, the expression of megalin and some of its ligands in the central and peripheral nervous system suggests a role for this receptor in neural regeneration processes. Despite its obvious importance, the regulation of megalin expression is poorly understood. In this review, we describe the functions of megalin and its association with certain pathological conditions as well as the current understanding of the mechanisms that underlie the control of megalin expression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Enfermedad de Alzheimer/fisiopatología , Transporte Biológico/fisiología , Colesterol/fisiología , Cálculos Biliares/metabolismo , Cálculos Biliares/fisiopatología , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Distribución Tisular/fisiología
8.
Biol. Res ; 44(1): 89-105, 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591869

RESUMEN

Since the discovery of the low-density lipoprotein receptor (LDLR) and its association with familial hypercholesterolemia in the early 1980s, a family of structurally related proteins has been discovered that has apolipoprotein E as a common ligand, and the broad functions of its members have been described. LRP2, or megalin, is a member of the LDLR family and was initially called gp330. Megalin is an endocytic receptor expressed on the apical surface of several epithelial cells that internalizes a variety of ligands including nutrients, hormones and their carrier proteins, signaling molecules, morphogens, and extracellular matrix proteins. Once internalized, these ligands are directed to the lysosomal degradation pathway or transported by transcytosis from one side of the cell to the opposite membrane. The availability of megalin at the cell surface is controlled by several regulatory mechanisms, including the phosphorylation of its cytoplasmic domain by GSK3, the proteolysis of the extracellular domain at the cell surface (shedding), the subsequent intramembrane proteolysis of the transmembrane domain by the gamma-secretase complex, and exosome secretion. Based on the important roles of its ligands and its tissue expression pattern, megalin has been recognized as an important component of many pathological conditions, including diabetic nephropathy, Lowe syndrome, Dent disease, Alzheimer's disease (AD) and gallstone disease. In addition, the expression of megalin and some of its ligands in the central and peripheral nervous system suggests a role for this receptor in neural regeneration processes. Despite its obvious importance, the regulation of megalin expression is poorly understood. In this review, we describe the functions of megalin and its association with certain pathological conditions as well as the current understanding of the mechanisms that underlie the control of megalin expression.


Asunto(s)
Humanos , Enfermedad de Alzheimer/metabolismo , /fisiología , Enfermedad de Alzheimer/fisiopatología , Transporte Biológico/fisiología , Colesterol/fisiología , Cálculos Biliares/metabolismo , Cálculos Biliares/fisiopatología , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , /genética , /metabolismo , Distribución Tisular/fisiología
9.
Traffic ; 8(9): 1215-30, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17555532

RESUMEN

Megalin is a large endocytic receptor expressed at the apical surface of several absorptive epithelia. It binds multiple ligands including apolipoproteins, vitamin and hormone carrier proteins and signaling molecules such as parathyroid hormone and the morphogen sonic hedgehog. An important characteristic of megalin is its high endocytic activity, which is mediated by tyrosine-based endocytic motifs within the receptor's cytoplasmic tail. This domain also harbors several putative consensus phosphorylation motifs for protein kinase (PK) C and casein kinase-II and one consensus motif for PKA and glycogen synthase kinase-3 (GSK3). Here we report that the cytoplasmic domain of megalin is constitutively phosphorylated depending on the integrity of a PPPSP motif, a putative GSK3 site, with a minor participation of the other phosphorylation motifs. Mutation of the serine residue within the PPPSP motif as well as blocking GSK3 activity, with two different inhibitors, significantly decreased the phosphorylation levels of the receptor. Both the megalin PPPAP mutant and the underphosphorylated wild-type receptor, by inhibition of GSK3 activity, were more expressed at the cell surface and more efficiently recycled, but they were not inhibited in their initial endocytosis rates. Altogether, these results show that the PPPSP motif and the GSK3 activity are critical to allow megalin phosphorylation and also negatively regulate the receptor's recycling.


Asunto(s)
Endocitosis/fisiología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Células CHO , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Línea Celular , Cricetinae , Cricetulus , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Células LLC-PK1 , Cloruro de Litio/farmacología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Microdominios de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos
10.
Traffic ; 4(4): 273-88, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12694565

RESUMEN

Megalin and the low-density lipoprotein (LDL) receptor-related protein (LRP) are two large members of the LDL receptor family that bind and endocytose multiple ligands. The molecular and cellular determinants that dictate the sorting behavior of these receptors in polarized epithelial cells are largely unknown. Megalin is found apically distributed, whereas the limited information on LRP indicates its polarity. We show here that in Madin-Darby canine kidney cells, both endogenous LRP and a minireceptor containing the fourth ligand-binding, transmembrane and LRP cytosolic domains were basolaterally sorted. In contrast, minireceptors that either lacked the cytoplasmic domain or had the tyrosine in the NPTY motif mutated to alanine showed a preferential apical distribution. In LLC-PK1 cells, endogenous megalin was found exclusively in the apical membrane. Studies were also done using chimeric proteins harboring the cytosolic tail of megalin, one with the fourth ligand-binding domain of LRP and the other two containing the green fluorescent protein as the ectodomain and transmembrane domains of either megalin or LRP. Findings from these experiments showed that the cytosolic domain of megalin is sufficient for apical sorting, and that the megalin transmembrane domain promotes association with lipid rafts. In conclusion, we show that LRP and megalin both contain sorting information in their cytosolic domains that directs opposite polarity, basolateral for LRP and apical for megalin. Additionally, we show that the NPTY motif in LRP is important for basolateral sorting and the megalin transmembrane domain directs association with lipid rafts.


Asunto(s)
Citoplasma/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Perros , Electroforesis en Gel de Campo Pulsado , Células Epiteliales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA