RESUMEN
Background: Oropouche virus (OROV; species Orthobunyavirus oropoucheense) is an arthropod-borne virus that has caused outbreaks of Oropouche fever in Central and South America since the 1950s. This study investigates virological factors contributing to the reemergence of Oropouche fever in Brazil between 2023 and 2024. Methods: In this study, we combined OROV genomic, molecular, and serological data from Brazil from 1 January 2015 to 29 June 2024, along with in vitro and in vivo characterization. Molecular screening data included 93 patients with febrile illness between January 2023 and February 2024 from the Amazonas State. Genomic data comprised two genomic OROV sequences from patients. Serological data were obtained from neutralizing antibody tests comparing the prototype OROV strain BeAn 19991 and the 2024 epidemic strain. Epidemiological data included aggregated cases reported to the Brazilian Ministry of Health from 1 January 2014 to 29 June 2024. Findings: In 2024, autochthonous OROV infections were detected in previously non-endemic areas across all five Brazilian regions. Cases were reported in 19 of 27 federal units, with 83.2% (6,895 of 8,284) of infections in Northern Brazil and a nearly 200-fold increase in incidence compared to reported cases over the last decade. We detected OROV RNA in 10.8% (10 of 93) of patients with febrile illness between December 2023 and May 2024 in Amazonas. We demonstrate that the 2023-2024 epidemic was caused by a novel OROV reassortant that replicated approximately 100-fold higher titers in mammalian cells compared to the prototype strain. The 2023-2024 OROV reassortant displayed plaques earlier than the prototype, produced 1.7 times more plaques, and plaque sizes were 2.5 larger compared to the prototype. Furthermore, serum collected in 2016 from previously OROV-infected individuals showed at least a 32-fold reduction in neutralizing capacity against the reassortment strain compared to the prototype. Interpretation: These findings provide a comprehensive assessment of Oropouche fever in Brazil and contribute to a better understanding of the 2023-2024 OROV reemergence. The recent increased incidence may be related to a higher replication efficiency of a new reassortant virus that also evades previous immunity.
RESUMEN
Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles. Here we develop a dynamic modelling approach for infectious diseases that explicitly models both connectivity via human movement and environmental suitability interactions. We apply it to better understand recently observed (1995-2019) patterns as well as predict past unobserved (1983-2000) and future (2020-2039) spread of dengue in Mexico and Brazil. We find that these models can accurately reconstruct long-term spread pathways, determine historical origins, and identify specific routes of invasion. We find early dengue invasion is more heavily influenced by environmental factors, resulting in patchy non-contiguous spread, while short and long-distance connectivity becomes more important in later stages. Our results have immediate practical applications for forecasting and containing the spread of dengue and emergence of new serotypes. Given current and future trends in human mobility, climate, and zoonotic spillover, understanding the interplay between connectivity and environmental suitability will be increasingly necessary to contain emerging and re-emerging pathogens.
Asunto(s)
Dengue , Dengue/epidemiología , Dengue/transmisión , Dengue/virología , Humanos , Brasil/epidemiología , México/epidemiología , Animales , Virus del Dengue/fisiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/transmisión , Ambiente , Migración Humana , Aedes/virologíaRESUMEN
This study aimed to provide further insight into the evolutionary dynamics of SARS-CoV-2 by analyzing the case of a 40-year-old man who had previously undergone autologous hematopoietic stem cell transplantation due to a diffuse large B-cell lymphoma. He developed a persistent SARS-CoV-2 infection lasting at least 218 days and did not manifest a humoral immune response to the virus during this follow-up period. Whole-genome sequencing and viral cultures confirmed a persistent infection with a replication-positive virus that had undergone genetic variation for at least 196 days after symptom onset.
Asunto(s)
COVID-19 , Huésped Inmunocomprometido , SARS-CoV-2 , Esparcimiento de Virus , Humanos , Adulto , Masculino , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Linfoma de Células B Grandes Difuso/virología , Linfoma de Células B Grandes Difuso/inmunología , Trasplante de Células Madre Hematopoyéticas , Secuenciación Completa del GenomaRESUMEN
We detected Mayaro virus (MAYV) in 3.4% (28/822) of febrile patients tested during 2018-2021 from Roraima State, Brazil. We also isolated MAYV strains and confirmed that these cases were caused by genotype D. Improved surveillance is needed to better determine the burden of MAYV in the Amazon Region.
Asunto(s)
Epidemiología Molecular , Humanos , Brasil/epidemiología , Fiebre/virología , Fiebre/epidemiología , Masculino , Filogenia , Adulto , Alphavirus/genética , Alphavirus/clasificación , Femenino , Genotipo , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Historia del Siglo XXI , Adulto Joven , Anciano , Infecciones por Arenaviridae/epidemiología , Infecciones por Arenaviridae/virología , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , LactanteRESUMEN
Madariaga virus (MADV) and Venezuelan equine encephalitis virus (VEEV) are emerging arboviruses affecting rural and remote areas of Latin America. However, there are limited clinical and epidemiological reports available, and outbreaks are occurring at an increasing frequency. We addressed this gap by analyzing all the available clinical and epidemiological data of MADV and VEEV infections recorded since 1961 in Panama. A total of 168 of human alphavirus encephalitis cases were detected in Panama from 1961 to 2023. Here we describe the clinical signs and symptoms and epidemiological characteristics of these cases, and also explored signs and symptoms as potential predictors of encephalitic alphavirus infection when compared to those of other arbovirus infections occurring in the region. Our results highlight the challenges clinical diagnosis of alphavirus disease in endemic regions with overlapping circulation of multiple arboviruses.
RESUMEN
The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.
Asunto(s)
Arbovirus , Culicidae , Secuenciación de Nanoporos , Animales , Humanos , Culicidae/genética , Arbovirus/genética , Mosquitos Vectores , Brasil , ADNRESUMEN
ABSTRACT This study aimed to provide further insight into the evolutionary dynamics of SARS-CoV-2 by analyzing the case of a 40-year-old man who had previously undergone autologous hematopoietic stem cell transplantation due to a diffuse large B-cell lymphoma. He developed a persistent SARS-CoV-2 infection lasting at least 218 days and did not manifest a humoral immune response to the virus during this follow-up period. Whole-genome sequencing and viral cultures confirmed a persistent infection with a replication-positive virus that had undergone genetic variation for at least 196 days after symptom onset.
RESUMEN
Toxoplasmosis is an important zoonotic disease caused by the parasite Toxoplasma gondii and is especially fatal for neotropical primates. In Brazil, the Ministry of Health is responsible for national epizootic surveillance, but some diseases are still neglected. Here, we present an integrated investigation of an outbreak that occurred during the first year of the COVID-19 pandemic among eleven neotropical primates housed at a primatology center in Brazil. After presenting non-specific clinical signs, all animals died within four days. A wide range of pathogens were evaluated, and we successfully identified T. gondii as the causative agent within four days after necropsies. The liver was the most affected organ, presenting hemorrhage and hepatocellular necrosis. Tachyzoites and bradyzoite cysts were observed in histological examinations and immunohistochemistry in different organs; in addition, parasitic DNA was detected through PCR in blood samples from all specimens evaluated. A high prevalence of Escherichia coli was also observed, indicating sepsis. This case highlights some of the obstacles faced by the current Brazilian surveillance system. A diagnosis was obtained through the integrated action of researchers since investigation for toxoplasmosis is currently absent in national guidelines. An interdisciplinary investigation could be a possible model for future epizootic investigations in animals.
RESUMEN
Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.
Asunto(s)
Alphavirus , Culicidae , Dengue , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Humanos , Animales , Caballos/genética , Virus de la Encefalitis Equina del Este/genética , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/epidemiología , Culicidae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Filogenia , Estudios Prospectivos , Vigilancia en Salud Pública , Estudios Retrospectivos , Alphavirus/genética , ARNRESUMEN
Since 2014, Brazil has experienced an unprecedented epidemic caused by chikungunya virus (CHIKV), with several waves of East-Central-South-African (ECSA) lineage transmission reported across the country. In 2018, Rio de Janeiro state, the third most populous state in Brazil, reported 41% of all chikungunya cases in the country. Here we use evolutionary and epidemiological analysis to estimate the timescale of CHIKV-ECSA-American lineage and its epidemiological patterns in Rio de Janeiro. We show that the CHIKV-ECSA outbreak in Rio de Janeiro derived from two distinct clades introduced from the Northeast region in mid-2015 (clade RJ1, n = 63/67 genomes from Rio de Janeiro) and mid-2017 (clade RJ2, n = 4/67). We detected evidence for positive selection in non-structural proteins linked with viral replication in the RJ1 clade (clade-defining: nsP4-A481D) and the RJ2 clade (nsP1-D531G). Finally, we estimate the CHIKV-ECSA's basic reproduction number (R0) to be between 1.2 to 1.6 and show that its instantaneous reproduction number (Rt) displays a strong seasonal pattern with peaks in transmission coinciding with periods of high Aedes aegypti transmission potential. Our results highlight the need for continued genomic and epidemiological surveillance of CHIKV in Brazil, particularly during periods of high ecological suitability, and show that selective pressures underline the emergence and evolution of the large urban CHIKV-ECSA outbreak in Rio de Janeiro.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Virus Chikungunya/genética , Brasil/epidemiología , Filogenia , Genómica , Brotes de EnfermedadesRESUMEN
BACKGROUND: Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. METHODOLOGY/PRINCIPAL FINDINGS: Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico's geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration.
Asunto(s)
Aedes , Arbovirus , Humanos , Animales , México/epidemiología , Arbovirus/genética , América Central/epidemiología , América del NorteRESUMEN
While rodents are primary reservoirs of Venezuelan equine encephalitis virus (VEEV), their role in Madariaga virus (MADV) transmission remains uncertain, particularly given their overlapping geographic distribution. This study explores the interplay of alphavirus prevalence, rodent diversity, and land use within Darien and Western Panama provinces. A total of three locations were selected for rodent sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa Librada. Two sites were selected in Western Panama province: El Cacao and Cirí Grande. We used plaque reduction neutralization tests to assess MADV and VEEV seroprevalences in 599 rodents of 16 species across five study sites. MADV seroprevalence was observed at higher rates in Los Pavitos (Darien province), 9.0%, 95% CI: 3.6-17.6, while VEEV seroprevalence was elevated in El Cacao (Western Panama province), 27.3%, 95% CI: 16.1-40.9, and El Real de Santa María (Darien province), 20.4%, 95% CI: 12.6-29.7. Species like Oryzomys coesi, 23.1%, 95% CI: 5.0-53.8, and Transandinomys bolivaris, 20.0%, 95% CI: 0.5-71.6 displayed higher MADV seroprevalences than other species, whereas Transandinomys bolivaris, 80.0%, 95% CI: 28.3-99.4, and Proechimys semispinosus, 27.3%, 95% CI: 17.0-39.6, exhibited higher VEEV seroprevalences. Our findings provide support to the notion that rodents are vertebrate reservoirs of MADV and reveal spatial variations in alphavirus seropositivity among rodent species, with different provinces exhibiting distinct rates for MADV and VEEV. Moreover, specific rodent species are linked to unique seroprevalence patterns for these viruses, suggesting that rodent diversity and environmental conditions might play a significant role in shaping alphavirus distribution.
RESUMEN
The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of São José do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.
Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Dengue/epidemiología , Filogenia , Secuencia de Bases , Brotes de Enfermedades , Serogrupo , Genotipo , Variación GenéticaRESUMEN
OBJECTIVE: To analyze the relationship between one-minute sit-to-stand test (1MSTST) parameters and a diagnosis of post COVID-19 condition in a cohort of patients who previously had COVID-19. METHODS: This was a prospective cohort study of patients with post COVID-19 condition referred for body plethysmography at a tertiary university hospital. Post COVID-19 condition was defined in accordance with the current WHO criteria. RESULTS: Fifty-three patients were analyzed. Of those, 25 (47.2%) met the clinical criteria for post COVID-19 condition. HR was lower in the patients with post COVID-19 condition than in those without it at 30 s after initiation of the 1MSTST (86.2 ± 14.3 bpm vs. 101.2 ± 14.7 bpm; p < 0.001) and at the end of the test (94.4 ± 18.2 bpm vs. 117.3 ± 15.3 bpm; p < 0.001). The ratio between HR at the end of the 1MSTST and age-predicted maximal HR (HRend/HRmax) was lower in the group of patients with post COVID-19 condition (p < 0.001). An HRend/HRmax of < 62.65% showed a sensitivity of 78.6% and a specificity of 82.0% for post COVID-19 condition. Mean SpO2 at the end of the 1MSTST was lower in the patients with post COVID-19 condition than in those without it (94.9 ± 3.6% vs. 96.8 ± 2.4%; p = 0.030). The former group of patients did fewer repetitions on the 1MSTST than did the latter (p = 0.020). CONCLUSIONS: Lower SpO2 and HR at the end of the 1MSTST, as well as lower HR at 30 s after initiation of the test, were associated with post COVID-19 condition. In the appropriate clinical setting, an HRend/HRmax of < 62.65% should raise awareness for the possibility of post COVID-19 condition.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Estudios Prospectivos , Prueba de COVID-19RESUMEN
BACKGROUND: Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS: In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS: Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará, Tocantins (recurrence in 2022), and Pernambuco (recurrence in 2021) were limited to municipalities with few or no previously reported cases in the previous epidemic waves. The recurrence of chikungunya in Ceará in 2022 was associated with a new East-Central-South-African lineage. Population density metrics of the main CHIKV vector in Brazil, Aedes aegypti, were not correlated spatially with locations of chikungunya recurrence in Ceará and Tocantins. INTERPRETATION: Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of chikungunya in Brazil. These results can be used to inform public health interventions to prevent future chikungunya epidemic waves in urban settings. FUNDING: Global Virus Network, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, São Paulo Research Foundation, Brazil Ministry of Education, UK Medical Research Council, Brazilian National Council for Scientific and Technological Development, and UK Royal Society. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.
Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Masculino , Animales , Femenino , Humanos , Virus Chikungunya/genética , Fiebre Chikungunya/epidemiología , Brasil/epidemiología , Filogenia , Mosquitos Vectores , Estudios EpidemiológicosRESUMEN
The existence of sylvatic transmission of dengue virus in communities of neotropical bats remains uncertain. In this work we present a near-complete genome of dengue virus serotype 4 obtained from the brain sample of a bat from Platyrrhinus helleri specie collected in the Brazilian Amazon region. The presence of the virus in the brain sample may indicate a possible tropism for the central nervous system in bats, which may justify negative results in previous studies that focused on analysis of other tissues, such as liver and spleen. Besides the duration of dengue virus circulation in the Americas (circa 40 years) may be too short for an implementation of a sylvatic dengue virus cycle. Our findings suggest that continued monitoring is needed to confirm with the neotropical bats could potentially act as a natural reservoir of dengue in the region.
Asunto(s)
Quirópteros , Virus del Dengue , Dengue , Animales , Virus del Dengue/genética , Brasil/epidemiología , Serogrupo , Encéfalo , Dengue/epidemiologíaRESUMEN
Brazil is one of the nations most affected by Coronavirus disease 2019 (COVID-19). The introduction and establishment of new virus variants can be related to an increase in cases and fatalities. The emergence of Omicron, the most modified SARS-CoV-2 variant, caused alarm for the public health of Brazil. In this study, we examined the effects of the Omicron introduction in Minas Gerais (MG), the second-most populous state of Brazil. A total of 430 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples from November 2021 to June 2022 from Belo Horizonte (BH) city were sequenced. These newly sequenced genomes comprise 72% of all previously available SARS-CoV-2 genomes for the city. Evolutionary analysis of novel viral genomes reveals that a great diversity of Omicron sublineages have circulated in BH, a pattern in-keeping with observations across Brazil more generally. Bayesian phylogeographic reconstructions indicate that this diversity is a product of a large number of international and national importations. As observed previously, São Paulo state is shown as a significant hub for viral spread throughout the country, contributing to around 70% of all viral Omicron introductions detected in MG.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , Teorema de BayesRESUMEN
BACKGROUND: Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS: We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION: This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.
Asunto(s)
Artritis , Fiebre Chikungunya , Sinovitis , Masculino , Humanos , Femenino , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Estudios Prospectivos , Brasil/epidemiología , Artralgia/epidemiología , Artralgia/etiología , Biomarcadores , Enfermedad CrónicaRESUMEN
ABSTRACT Objective: To analyze the relationship between one-minute sit-to-stand test (1MSTST) parameters and a diagnosis of post COVID-19 condition in a cohort of patients who previously had COVID-19. Methods: This was a prospective cohort study of patients with post COVID-19 condition referred for body plethysmography at a tertiary university hospital. Post COVID-19 condition was defined in accordance with the current WHO criteria. Results: Fifty-three patients were analyzed. Of those, 25 (47.2%) met the clinical criteria for post COVID-19 condition. HR was lower in the patients with post COVID-19 condition than in those without it at 30 s after initiation of the 1MSTST (86.2 ± 14.3 bpm vs. 101.2 ± 14.7 bpm; p < 0.001) and at the end of the test (94.4 ± 18.2 bpm vs. 117.3 ± 15.3 bpm; p < 0.001). The ratio between HR at the end of the 1MSTST and age-predicted maximal HR (HRend/HRmax) was lower in the group of patients with post COVID-19 condition (p < 0.001). An HRend/HRmax of < 62.65% showed a sensitivity of 78.6% and a specificity of 82.0% for post COVID-19 condition. Mean SpO2 at the end of the 1MSTST was lower in the patients with post COVID-19 condition than in those without it (94.9 ± 3.6% vs. 96.8 ± 2.4%; p = 0.030). The former group of patients did fewer repetitions on the 1MSTST than did the latter (p = 0.020). Conclusions: Lower SpO2 and HR at the end of the 1MSTST, as well as lower HR at 30 s after initiation of the test, were associated with post COVID-19 condition. In the appropriate clinical setting, an HRend/HRmax of < 62.65% should raise awareness for the possibility of post COVID-19 condition.
RESUMO Objetivo: Analisar a relação entre parâmetros do teste de se sentar e levantar durante um minuto (TSL1) e o diagnóstico de síndrome pós-COVID-19 em uma coorte de pacientes que anteriormente apresentaram COVID-19. Métodos: Estudo prospectivo de coorte de pacientes com síndrome pós-COVID-19 encaminhados para realizar pletismografia corporal em um hospital universitário terciário. A síndrome pós-COVID-19 foi definida conforme os critérios atuais da OMS. Resultados: Foram analisados 53 pacientes. Destes, 25 (47,2%) preencheram os critérios clínicos de síndrome pós-COVID-19. A FC foi menor nos pacientes com síndrome pós-COVID-19 do que naqueles sem a síndrome 30 s após o início do TSL1 (86,2 ± 14,3 bpm vs. 101,2 ± 14,7 bpm; p < 0,001) e no fim do teste (94,4 ± 18,2 bpm vs. 117,3 ± 15,3 bpm; p < 0,001). A relação entre a FC no fim do TSL1 e a FC máxima prevista para a idade (FCfim/FCmáx) foi menor nos pacientes com síndrome pós-COVID-19 (p < 0,001). A relação FCfim/FCmáx < 62,65% apresentou sensibilidade de 78,6% e especificidade de 82,0% para síndrome pós-COVID-19. A média da SpO2 no fim do TSL1 foi menor nos pacientes com síndrome pós-COVID-19 do que naqueles sem a síndrome (94,9 ± 3,6% vs. 96,8 ± 2,4%; p = 0,030). Os pacientes com síndrome pós-COVID-19 realizaram menos repetições durante o TSL1 do que os sem a síndrome (p = 0,020). Conclusões: SpO2 e FC mais baixas no fim do TSL1 e FC mais baixa 30 s após o início do teste apresentaram relação com síndrome pós-COVID-19. No contexto clínico apropriado, a relação FCfim/FCmáx < 62,65% deve alertar para a possibilidade de síndrome pós-COVID-19.
RESUMEN
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.