Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
ACS Appl Mater Interfaces ; 12(35): 39781-39786, 2020 Sep 02.
Article En | MEDLINE | ID: mdl-32805849

Our present understanding of surface dissolution of nuclear fuels such as uranium dioxide (UO2) is limited by the use of nonlocal characterization techniques. Here we discuss the use of state-of-the-art scanning transmission electron microscopy (STEM) to reveal atomic-scale changes occurring to a UO2 thin film subjected to anoxic dissolution in deionized water. No amorphization of the UO2 film surface during dissolution is observed, and dissolution occurs preferentially at surface reactive sites that present as surface pits which increase in size as the dissolution proceeds. Using a combination of STEM imaging modes, energy-dispersive X-ray spectroscopy (STEM-EDS), and electron energy loss spectroscopy (STEM-EELS), we investigate structural defects and oxygen passivation of the surface that originates from the filling of the octahedral interstitial site in the center of the unit cells and its associated lattice contraction. Taken together, our results reveal complex pathways for both the dissolution and infiltration of solutions into UO2 surfaces.

2.
Phys Chem Chem Phys ; 22(27): 15616-15631, 2020 Jul 21.
Article En | MEDLINE | ID: mdl-32617551

A fundamental approach was taken to understand the implications of increased nuclear waste loading in the search for new materials for long-term radioisotope encapsulation. This study focused on the formation and radiation tolerance of glass ceramics with selectively induced CaMoO4 as a form to trap the problematic fission product molybdenum. Several samples were synthesised with up to 10 mol% MoO3 within a soda lime borosilicate matrix, exhibiting phase separation on the nano scale according to thermal analysis, which detected two glass transition temperatures. It is predicted that these two phases are a result of spinodal decomposition with Si-O-Ca-O-Si and Si-O-Ca-O-B units, with the latter phase acting as a carrier for MoO3. The solubility limit of molybdenum within this matrix was 1 mol%, after which crystallisation of CaMoO4 occurred, with crystallite size (CS) increasing and cell parameters decreasing as a function of [MoO3]. These materials were then subjected to irradiation with 7 MeV Au3+ ions to replicate the nuclear interactions resulting from α-decay. A dose of 3 × 1014 ions per cm2 was achieved, resulting in 1 dpa of damage within a depth of ∼1.5 µm, according to TRIM calculations. Glasses and glass ceramics were then analysed using BSE imaging, XRD refinement, and Raman spectroscopy to monitor changes induced by accumulated damage. Irradiation was not observed to cause any significant changes to the residual amorphous network, nor did it cause amorphisation of CaMoO4 based on the relative changes to particle size and density. Furthermore, the substitution of Ca2+ to form water-soluble Na2/NaGd-MoO4 assemblages did not occur, indicating that CaMoO4 is resilient to chemical modification following ion interactions. Au-irradiation did however cause CaMoO4 lattice parameter expansion, concurrent to growth in CS. This is predicted to be a dual parameter mechanism of alteration based on thermal expansion from electronic coupling, and the accumulation of defects arising from atomic displacements.

3.
Sci Rep ; 10(1): 6347, 2020 Apr 14.
Article En | MEDLINE | ID: mdl-32286368

The dependencies of the enhanced thermomechanical properties of zirconium carbide (ZrCx) with sample purity and stoichiometry are still not understood due to discrepancies in the literature. Multiple researchers have recently reported a linear relation between the carbon to zirconium atomic ratio (C/Zr) and the lattice parameter, in contrast with a more established relationship that suggests that the lattice parameter value attains a maximum value at a C/Zr ~ 0.83. In this study, the relationship between C/Zr atomic ratio and the lattice parameter is critically assessed: it is found that recent studies reporting the thermophysical properties of ZrCx have unintentionally produced and characterised samples containing zirconium oxycarbide. To avoid such erroneous characterization of ZrCx thermophysical properties in the future, we propose a method for the accurate measurement of the stoichiometry of ZrCx using three independent experimental techniques, namely: elemental analysis, thermogravimetric analysis and nuclear magnetic resonance spectroscopy. Although a large scatter in the results (ΔC/Zr = 0.07) from these different techniques was found when used independently, when combining the techniques together consistent values of x in ZrCx were obtained.

4.
Sci Rep ; 10(1): 3096, 2020 Feb 20.
Article En | MEDLINE | ID: mdl-32080236

ZrC1-x (sub-stoichiometric zirconium carbide), a group IV transition metal carbide, is being considered for various high temperature applications. Departure from stoichiometry changes the thermo-physical response of the material. Reported thermo-physical properties exhibit, in some cases, a degree of scatter with one likely contributor to this being the uncertainty in the C/Zr ratio of the samples produced. Conventional, methods for assigning C/Zr to samples are determined either by nominal stochiometric ratios or combustion carbon analysis. In this study, a range of stoichiometries of hot-pressed ZrC1-x were examined by SEM, XRD, Raman spectroscopy and static 13C NMR spectroscopy and used as a basis to correct the C/Zr. Graphite, amorphous, and ZrC1-x carbon signatures are observed in the 13C NMR spectra of samples and are determined to vary in intensity with sintering temperature and stoichiometry. In this study a method is outlined to quantify the stoichiometry of ZrC1-x and free carbon phases, providing an improvement over the sole use and reliance of widely adopted bulk carbon combustion analysis. We report significantly lower C/Zr values determined by 13C NMR analysis compared with carbon analyser and nominal methods. Furthermore, the location of carbon disassociated from the ZrC1-x structure is analysed using SEM and Raman spectroscopy.

5.
Phys Chem Chem Phys ; 20(23): 16167-16175, 2018 Jun 13.
Article En | MEDLINE | ID: mdl-29855651

The X-ray photoelectron spectral structure of CeO2 valence electrons in the binding energy range of 0 to ∼50 eV was analyzed. The core-electron spectral structure parameters and the results of relativistic discrete-variational calculations of CeO8 and Ce63O216 clusters were taken into account. Comparison of the valence and the core-electron spectral structures showed that the formation of the inner (IVMO) and the outer (OVMO) valence molecular orbitals contributes to the spectral structure more than the many-body processes. The Ce 4f electrons were established to participate directly in chemical bond formation in CeO2 losing partially their f character. They were found to be localized mostly within the outer valence band. The Ce 5p atomic orbitals were shown to participate in the formation of both the inner and the outer valence molecular orbitals (MOs). A large part in the IVMO formation is taken by the filled Ce 5p1/2, 5p3/2 and O 2s atomic shells, while the Ce 5s electrons participate weakly in the chemical bond formation. The composition and the sequent order of the molecular orbitals in the binding energy range of 0 to ∼50 eV were established. A quantitative scheme for the molecular orbitals of CeO2 was built. This scheme is fundamental for understanding the nature of chemical bonding and also for the interpretation of other X-ray spectra of CeO2. Evaluations revealed that the IVMO electrons weaken the chemical bond formed by the OVMO electrons by 37%.

6.
Inorg Chem ; 56(3): 1558-1573, 2017 Feb 06.
Article En | MEDLINE | ID: mdl-28124561

Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal ß-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to ß-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo6+ to Mo5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion-based processes initiated by added energy from ß-impingement and second-order structural modifications induced by defect accumulation.

7.
Inorg Chem ; 55(16): 8059-70, 2016 Aug 15.
Article En | MEDLINE | ID: mdl-27490370

XPS determination of the oxygen coefficient kO = 2 + x and ionic (U(4+), U(5+), and U(6+)) composition of oxides UO2+x formed on the surfaces of differently oriented (hkl) planes of thin UO2 films on LSAT (Al10La3O51Sr14Ta7) and YSZ (yttria-stabilized zirconia) substrates was performed. The U 4f and O 1s core-electron peak intensities as well as the U 5f relative intensity before and after the (129)Xe(23+) and (238)U(31+) irradiations were employed. It was found that the presence of uranium dioxide film in air results in formation of oxide UO2+x on the surface with mean oxygen coefficients kO in the range 2.07-2.11 on LSAT and 2.17-2.23 on YSZ substrates. These oxygen coefficients depend on the substrate and weakly on the crystallographic orientation. On the basis of the spectral parameters it was established that uranium dioxide films AP2,3 on the LSAT substrates have the smallest kO values, and from the XRD and EBSD results it follows that these samples have a regular monocrystalline structure. The XRD and EBSD results indicate that samples AP5-7 on the YSZ substrates have monocrystalline structure; however, they have the highest kO values. The observed difference in the kO values was probably caused by the different nature of the substrates: the YSZ substrates provide 6.4% compressive strain, whereas (001) LSAT substrates result only in 0.03% tensile strain in the UO2 films. (129)Xe(23+) irradiation (92 MeV, 4.8 × 10(15) ions/cm(2)) of uranium dioxide films on the LSAT substrates was shown to destroy both long-range ordering and uranium close environment, which results in an increase of uranium oxidation state and regrouping of oxygen ions in uranium close environment. (238)U(31+) (110 MeV, 5 × 10(10), 5 × 10(11), 5 × 10(12) ions/cm(2)) irradiations of uranium dioxide films on the YSZ substrates were shown to form the lattice damage only with partial destruction of the long-range ordering.

10.
Inorg Chem ; 53(13): 6928-33, 2014 Jul 07.
Article En | MEDLINE | ID: mdl-24926812

A massive interest has been generated lately by the improvement of solid-state magic-angle spinning (MAS) NMR methods for the study of a broad range of paramagnetic organic and inorganic materials. The open-shell cations at the origin of this paramagnetism can be metals, transition metals, or rare-earth elements. Actinide-bearing compounds and their 5f unpaired electrons remain elusive in this intensive research area due to their well-known high radiotoxicity. A dedicated effort enabling the handling of these highly radioactive materials now allows their analysis using high-resolution MAS NMR (>55 kHz). Here, the study of the local structure of a series of actinide dioxides, namely, ThO2, UO2, NpO2, PuO2, and AmO2, using solid-state (17)O MAS NMR is reported. An important increase of the spectral resolution is found due to the removal of the dipolar broadening proving the efficiency of this technique for structural analysis. The NMR parameters in these systems with numerous and unpaired 5f electrons were interpreted using an empirical approach. Single-ion model calculations were performed for the first time to determine the z component of electron spin on each of the actinide atoms, which is proportional to the shifts. A similar variation thereof was observed only for the heavier actinides of this study.

11.
Solid State Nucl Magn Reson ; 42: 87-97, 2012 Apr.
Article En | MEDLINE | ID: mdl-22341485

Multinuclear (71)Ga, (69)Ga, (27)Al and (17)O NMR parameters of various polymorphs of LaGaO(3) and LaAlO(3) perovskites were obtained from the combination of solid-state MAS NMR with solid-state DFT calculations. Some of the materials studied are potential candidate electrolyte materials with applications in intermediate temperature solid oxide fuel cells (ITSOFCs). Small variations in the local distortions of the subject phases are experimentally observed by (71)Ga (and (69)Ga) and (27)Al NMR in the LaGaO(3) and LaAlO(3) phases, respectively, with heating to 1400 K. The orthorhombic-to-rhombohedral phase transformation occurring in LaGaO(3) at approximately 416 K is clearly observed in the (71)Ga/(69)Ga NMR spectra and is associated with a significant increase in the quadrupolar coupling constant (QCC). Thereafter a gradual decrease in QCC is observed, consistent with increased motion of the GaO(6) octahedral units and a reduction in the degree of octahedral tilting. The experimental and theoretical (71)Ga, (69)Ga, (27)Al and (17)O NMR parameters (including isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries) of the low and high temperature polymorphs are compared. In general, the calculated values display good agreement with experimental data, although some significant deviations are identified and discussed.


Calcium Compounds/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Oxides/chemistry , Titanium/chemistry , Computer Simulation , Hot Temperature , Phase Transition , Temperature
12.
J Phys Chem B ; 111(28): 8014-9, 2007 Jul 19.
Article En | MEDLINE | ID: mdl-17590041

An 17O-enriched version of the titanosilicate glass, KTS2 (K(2)O.TiO(2).2SiO(2)), was analyzed by 17O MAS, off-MAS, and 3Q-QCPMG-MAS experiments. Exploiting the variations in EFG and CSA parameters for the 17O sites in KTS2 glass, we detected four types of oxygen by reduction of spinning sideband intensities in the off-MAS experiments. From the 17O off-MAS and 3Q-QCPMG-MAS experiments, the Si-O-Ti and K-O-Ti resonances were characterized by a distribution of isotropic chemical shifts, whereas the Si-O-Si resonance was characterized by very small distributions of both EFG tensor and isotropic chemical shift, which means that the disorder in the glass is closely related to Ti. In addition to the order/disorder issue, the most striking feature about the 17O off-MAS experiments on KTS2 is the lack of signals from Ti-O-Ti, which contradicts linking between corner sharing TiO(5) units. Therefore, the structure must consist of linkages between TiO(5) units and SiO(4) tetrahedra and linkages between SiO(4) tetrahedra.

13.
Phys Chem Chem Phys ; 9(13): 1587-98, 2007 Apr 07.
Article En | MEDLINE | ID: mdl-17429552

The nuclear magnetic resonance (NMR) shielding and electric field gradient (EFG) tensors of three polymorphs of Mg(2)SiO(4), forsterite (alpha-Mg(2)SiO(4)), wadsleyite (beta-Mg(2)SiO(4)) and ringwoodite (gamma-Mg(2)SiO(4)), have been calculated using a density functional theory (DFT) approach with a planewave basis set and pseudopotential approximation. These Mg(2)SiO(4) polymorphs are the principal components of the Earth down to depths of 660 km and have been proposed as the hosts of water in the Earth's upper mantle and transition zone. A comparison of our calculations with single-crystal spectroscopic data in the literature for the alpha-polymorph, forsterite, shows that both the magnitude and orientation of the shielding and EFG tensors for O and Si can be obtained with sufficient accuracy to distinguish subtle differences in atomic positions between published structures. We compare calculated (17)O MAS NMR quadrupolar powder lineshapes directly with experimental lineshapes and show that we are able to reproduce them within the precision with which the NMR parameters may be determined from multi-parameter fitting. The relatively small amounts of sample available for the beta- and gamma-polymorphs, arising from the high pressures required for synthesis, has hindered the extraction of NMR parameters in previous work. The application of DFT calculations to these high-pressure polymorphs confirms previous spectral assignments, and provides deeper insight into the empirical correlations and observations reported in the literature. These first-principles methods are highly promising for the determination of local bonding in more complex materials, such as the hydrated forms of Mg(2)SiO(4), by aiding analysis of their multinuclear NMR spectra.

14.
Nature ; 445(7124): 190-3, 2007 Jan 11.
Article En | MEDLINE | ID: mdl-17215840

There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alpha-decay. At present, this number is estimated to be 1,000-2,000 atoms/alpha in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/alpha in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of half-life or loading levels (dose rate). On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years). These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event.

15.
J Phys Chem B ; 110(21): 10358-64, 2006 Jun 01.
Article En | MEDLINE | ID: mdl-16722740

The yttrium local environment in the series of pyrochlores Y2Ti2-xSnxO7 was studied using 89Y NMR. Oxides with the pyrochlore structure exhibit a range of interesting physical and chemical properties, resulting in many technological applications, including the encapsulation of lanthanide- and actinide-bearing radioactive waste. The use of the nonradioactive Y3+ cation provides a sensitive probe for any changes in the local structure and ordering with solid solution composition, through 89Y (I = 1/2) NMR. We confirm that a single pyrochlore phase is formed over the entire compositional range, with Y found only on the eight-coordinated A site. A significant (approximately 15 ppm) chemical shift is observed for each Sn substituted into the Y second neighbor coordination environment. The spectral signal intensities of the possible combinations of Sn/Ti neighbors match those predicted statistically assuming a random distribution of Sn4+/Ti4+ on the six-coordinated pyrochlore B site.

16.
J Magn Reson ; 178(2): 228-36, 2006 Feb.
Article En | MEDLINE | ID: mdl-16260159

Experimental procedures are proposed and demonstrated that separate the spectroscopic contribution from both (47)Ti and (49)Ti in solid-state nuclear magnetic resonance spectra. These take advantage of the different nuclear spin quantum numbers of these isotopes that lead to different "effective" radiofrequency fields for the central transition nutation frequencies when these nuclei occur in sites with a significant electric field gradient. Numerical simulations and solid-state NMR experiments were performed on the TiO(2) polymorphs anatase and rutile. For anatase, the separation of the two isotopes at high field (21.1T) facilitated accurate determination of the electric field gradient (EFG) and chemical shift anisotropy (CSA) tensors. This was accomplished by taking advantage of the quadrupolar interaction between the EFG at the titanium site and the different magnitudes of the nuclear quadrupole moments (Q) of the two isotopes. Rutile, having a larger quadrupolar coupling constant (C(Q)), was examined by (49)Ti-selective experiments at different magnetic fields to obtain spectra with different scalings of the two anisotropic tensors. A small chemical shielding anisotropy (CSA) of -30 ppm was determined.

17.
J Phys Chem B ; 109(15): 7245-50, 2005 Apr 21.
Article En | MEDLINE | ID: mdl-16851828

The temperature dependence of (17)O and (25)Mg NMR chemical shifts in solid MgO have been calculated using a first-principles approach. Density functional theory, pseudopotentials, a plane-wave basis set, and periodic boundary conditions were used both to describe the motion of the nuclei and to compute the NMR chemical shifts. The chemical shifts were obtained using the gauge-including projector augmented wave method. In a crystalline solid, the temperature dependence is due to both (i) the variation of the averaged equilibrium structure and (ii) the fluctuation of the atoms around this structure. In MgO, the equilibrium structure at each temperature is uniquely defined by the cubic lattice parameters, which we take from experiment. We evaluate the effect of the fluctuations within a quasiharmonic approximation. In particular, the dynamical matrix, defining the harmonic Hamiltonian, has been computed for each equilibrium volume. This harmonic Hamiltonian was used to generate nuclear configurations that obey quantum statistical mechanics. The chemical shifts were averaged over these nuclear configurations. The results reproduce the previously published experimental NMR data measured on MgO between room temperature and 1000 degrees C. It is shown that the chemical shift behavior with temperature cannot be explained by thermal expansion alone. Vibrational corrections due to the fluctuations of atoms around their equilibrium position are crucial to reproduce the experimental results.

18.
J Magn Reson ; 161(2): 183-90, 2003 Apr.
Article En | MEDLINE | ID: mdl-12713968

Methods for parallel simulation of solid state NMR powder spectra are presented for both shared and distributed memory parallel supercomputers. For shared memory architectures the performance of simulation programs implementing the OpenMP application programming interface is evaluated. It is demonstrated that the design of correct and efficient shared memory parallel programs is difficult as the performance depends on data locality and cache memory effects. The distributed memory parallel programming model is examined for simulation programs using the MPI message passing interface. The results reveal that both shared and distributed memory parallel computation are very efficient with an almost perfect application speedup and may be applied to the most advanced powder simulations.

...