Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768770

RESUMEN

Amongst per- and polyfluoroalkyl substances (PFAS) compounds, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have a high persistence in physicochemical and biological degradation; therefore, the accumulation of PFOS and PFOA can negatively affect aquatic organisms and human health. In this study, two microalgae species (Chlorella vulgaris and Scenedesmus obliquus) were exposed to different concentrations of a PFOS and PFOA mixture (0 to 10 mg L-1). With increases in the contact time (days) and the PFAS concentration (mg L-1) from 1 to 7, and 0.5 to 10, respectively, the cell viability, total chlorophyll content, and protein content decreased, and the decrease in these parameters was significantly greater in Scenedesmus obliquus. As another step in the study, the response surface methodology (RSM) was used to optimize the toxicity effects of PFAS on microalgae in a logical way, as demonstrated by the high R2 (>0.9). In another stage, a molecular docking study was performed to monitor the interaction of PFOS and PFOA with the microalgae, considering hydrolysis and the enzymes involved in oxidation-reduction reactions using individual enzymes. The analysis was conducted on carboxypeptidase in Chlorella vulgaris and on c-terminal processing protease and oxidized cytochrome c6 in Scenedesmus obliquus. For the enzyme activity, the affinity and dimensions of ligands-binding sites and ligand-binding energy were estimated in each case.


Asunto(s)
Ácidos Alcanesulfónicos , Chlorella vulgaris , Fluorocarburos , Microalgas , Humanos , Microalgas/metabolismo , Chlorella vulgaris/metabolismo , Simulación del Acoplamiento Molecular , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Caprilatos/toxicidad , Ácidos Alcanesulfónicos/toxicidad
2.
Environ Sci Pollut Res Int ; 29(39): 58561-58589, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35780273

RESUMEN

Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.


Asunto(s)
Fosfatos , Fósforo , Adsorción , Floraciones de Algas Nocivas
3.
Toxics ; 9(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822667

RESUMEN

The public is already aware that nitrate pollution caused by nutrient runoff from farms is harmful to aquatic life and human health, and there is an urgent need for a product/technology to solve this problem. A biochar adsorbent was synthesized and used to remove nitrate ions from aqueous media based on spent mushroom compost (SMC), pre-treated with iron (III) chloride hexahydrate and pyrolyzed at 600 °C. The surface properties and morphology of SMCB/Fe were investigated using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of main parameters such as the adsorbent dosages, pH of the solutions, contact times, and ion concentrations on the efficiency of nitrate removal was investigated. The validity of the experimental method was examined by the isothermal adsorption and kinetic adsorption models. The nitrate sorption kinetics were found to follow the pseudo-second-order model, with a higher determination coefficient (0.99) than the pseudo-first-order (0.86). The results showed that the maximum percentage of nitrate adsorption was achieved at equilibrium pH 5-7, after 120 min of contact time, and with an adsorbent dose of 2 g L-1. The highest nitrate adsorption capacity of the modified adsorbent was 19.88 mg g-1.

4.
Microorganisms ; 9(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375001

RESUMEN

Using microalgae to remove pharmaceuticals and personal care products (PPCPs) micropollutants (MPs) have attracted considerable interest. However, high concentrations of persistent PPCPs can reduce the performance of microalgae in remediating PPCPs. Three persistent PPCPs, namely, carbamazepine (CBZ), sulfamethazine (SMT) and tramadol (TRA), were treated with a combination of Chaetoceros muelleri and biochar in a photobioreactor during this study. Two reactors were run. The first reactor comprised Chaetoceros muelleri, as the control, and the second reactor comprised Chaetoceros muelleri and biochar. The second reactor showed a better performance in removing PPCPs. Through the response surface methodology, 68.9% (0.330 mg L-1) of CBZ, 64.8% (0.311 mg L-1) of SMT and 69.3% (0.332 mg L-1) of TRA were removed at the initial concentrations of MPs (0.48 mg L-1) and contact time of 8.1 days. An artificial neural network was used in optimising elimination efficiency for each MP. The rational mean squared errors and high R2 values showed that the removal of PPCPs was optimised. Moreover, the effects of PPCPs concentration (0-100 mg L-1) on Chaetoceros muelleri were studied. Low PPCP concentrations (<40 mg L-1) increased the amounts of chlorophyll and proteins in the microalgae. However, cell viability, chlorophyll and protein contents dramatically decreased with increasing PPCPs concentrations (>40 mg L-1).

5.
Chemosphere ; 253: 126646, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32276120

RESUMEN

Although pesticides are widely used in agriculture, industry and households, they pose a risk to human health and ecosystems. Based on target organisms, the main types of pesticides are herbicides, insecticides and fungicides, of which herbicides accounted for 46% of the total pesticide usage worldwide. The movement of pesticides into water bodies occurs through run-off, spray drift, leaching, and sub-surface drainage, all of which have negative impacts on aquatic environments and humans. We sought to define the critical factors affecting the fluxes of contaminants into receiving waters. We also aimed to specify the feasibility of using sorbents to remove pesticides from waterways. In Karun River in Iran (1.21 × 105 ng/L), pesticide concentrations are above regulatory limits. The concentration of pesticides in fish can reach 26.1 × 103 µg/kg, specifically methoxychlor herbicide in Perca fluviatilis in Lithuania. During the last years, research has focused on elimination of organic pollutants, such as pesticides, from aqueous solution. Pesticide adsorption onto low-cost materials can effectively remediate contaminated waters. In particular, nanoparticle adsorbents and carbon-based adsorbents exhibit high performance (nearly 100%) in removing pesticides from water bodies.


Asunto(s)
Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adsorción , Agricultura , Animales , Ecosistema , Peces , Fungicidas Industriales/análisis , Herbicidas/análisis , Humanos , Insecticidas/análisis , Irán , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 166: 124-30, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26496842

RESUMEN

Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant.


Asunto(s)
Typhaceae/crecimiento & desarrollo , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Humedales , Adsorción , Biodegradación Ambiental , Typhaceae/química , Contaminantes Químicos del Agua/química , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...