Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38187525

RESUMEN

Artemisinin (ART) combination therapies have been critical in reducing malaria morbidity and mortality, but these important drugs are threatened by growing resistance associated with mutations in Pfcoronin and Pfkelch13 . Here, we describe the mechanism of Pfcoronin -mediated ART resistance. Pf Coronin interacts with Pf Actin and localizes to the parasite plasma membrane (PPM), the digestive vacuole (DV) membrane, and membrane of a newly identified preDV compartment-all structures involved in the trafficking of hemoglobin from the RBC for degradation in the DV. Pfcoronin mutations alter Pf Actin homeostasis and impair the development and morphology of the preDV. Ultimately, these changes are associated with decreased uptake of red blood cell cytosolic contents by ring-stage Plasmodium falciparum . Previous work has identified decreased hemoglobin uptake as the mechanism of Pfkelch 13-mediated ART resistance. This work demonstrates that Pf Coronin appears to act via a parallel pathway. For both Pfkelch13 -mediated and Pfcoronin -mediated ART resistance, we hypothesize that the decreased hemoglobin uptake in ring stage parasites results in less heme-based activation of the artemisinin endoperoxide ring and reduced cytocidal activity. This study deepens our understanding of ART resistance, as well as hemoglobin uptake and development of the DV in early-stage parasites.

2.
bioRxiv ; 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945434

RESUMEN

Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...