Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sci Rep ; 14(1): 19651, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179650

RESUMEN

Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD). In comparison to the control group fed with standard diet, we observed 69 miRNAs exhibiting increased expression and 63 showing decreased expression in the HFD mice's hippocampus. Through bioinformatics analysis, we identified numerous potential targets of the dysregulated miRNAs, pinpointing a subset of genes regulating neuroplasticity that were targeted by multiple differentially modulated miRNAs. We also validated the expression of these synaptic and non-synaptic proteins, confirming the downregulation of Synaptotagmin 1 (SYT1), calcium/calmodulin dependent protein kinase I delta (CaMK1D), 2B subunit of N-methyl-D-aspartate glutamate receptor (GRIN2B), the DNA-binding protein Special AT-Rich Sequence-Binding Protein 2 (SATB2), and RNA-binding proteins Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) and Neuro-oncological ventral antigen 1 (NOVA1) in the hippocampus of HFD mice. In summary, our study offers a snapshot of the HFD-related miRNA landscape potentially involved in the alterations of brain functions associated with metabolic disorders. By shedding light on the specific miRNA-mRNA interactions, our research contributes to a deeper understanding of the molecular mechanisms underlying the effects of HFD on the synaptic function.


Asunto(s)
Dieta Alta en Grasa , Hipocampo , MicroARNs , Plasticidad Neuronal , Animales , Hipocampo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Dieta Alta en Grasa/efectos adversos , Plasticidad Neuronal/genética , Ratones , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Sinaptotagmina I
2.
Clin Epigenetics ; 16(1): 109, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155390

RESUMEN

BACKGROUND: Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS: We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS: Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.


Asunto(s)
Cromatina , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Humanos , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/antagonistas & inhibidores , Cromatina/genética , Cromatina/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Acetilación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Histonas/metabolismo , Ubiquitinación/efectos de los fármacos
3.
Cancer Cell Int ; 24(1): 56, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317193

RESUMEN

BACKGROUND: About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and ß4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS: H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS: H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and ß4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS: Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.

4.
Eur J Intern Med ; 114: 15-22, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277249

RESUMEN

Epigenetics is a rapidly growing field of biology that studies the changes in gene expression that are not due to alterations in the DNA sequence but rather the chemical modifications of DNA and its associated proteins. Epigenetic mechanisms can profoundly influence gene expression, cell differentiation, tissue development, and disease susceptibility. Understanding epigenetic changes is essential to elucidate the mechanisms underlying the increasingly recognized role of environmental and lifestyle factors in health and disease and the intergenerational transmission of phenotypes. Recent studies suggest epigenetics may be critical in various diseases, from cardiovascular disease and cancer to neurodevelopmental and neurodegenerative disorders. Epigenetic modifications are potentially reversible and could provide new therapeutic avenues for treating these diseases using epigenetic modulators. Moreover, epigenetics provide insight into disease pathogenesis and biomarkers for disease diagnosis and risk stratification. Nevertheless, epigenetic interventions have the potential for unintended consequences and may potentially lead to increased risks of unexpected outcomes, such as adverse drug reactions, developmental abnormalities, and cancer. Therefore, rigorous studies are essential to minimize the risks associated with epigenetic therapies and to develop safe and effective interventions for improving human health. This article provides a synthetic and historical view of the origin of epigenetics and some of the most relevant achievements.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Epigénesis Genética , Neoplasias/genética
5.
Eur Heart J ; 44(4): 248-250, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36380726
6.
Biomedicines ; 10(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35740410

RESUMEN

Despite being a crucial physiological function of the brain, the mechanisms underlying forgetting are still poorly understood. Estrogens play a critical role in different brain functions, including memory. However, the effects of sex hormones on forgetting vulnerabilitymediated by retroactive interference (RI), a phenomenon in which newly acquired information interferes with the retrieval of already stored information, are still poorly understood. The aim of our study was to characterize the sex differences in interference-mediated forgetting and identify the underlying molecular mechanisms. We found that adult male C57bl/6 mice showed a higher susceptibility to RI-dependent memory loss than females. The preference index (PI) in the NOR paradigm was 52.7 ± 5.9% in males and 62.3 ± 13.0% in females. The resistance to RI in female mice was mediated by estrogen signaling involving estrogen receptor α activation in the dorsal hippocampus. Accordingly, following RI, females showed higher phosphorylation levels (+30%) of extracellular signal-regulated kinase1/2 (ERK1/2) in the hippocampus. Pharmacological inhibition of ERK1/2 made female mice prone to RI. The PI was 70.6 ± 11.0% in vehicle-injected mice and 47.4 ± 10.8% following PD98059 administration. Collectively, our data suggest that hippocampal estrogen α receptor-ERK1/2 signaling is critically involved in a pattern separation mechanism that inhibits object-related RI in female mice.

7.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35740569

RESUMEN

BACKGROUND: Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). METHODS: We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. RESULTS: In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. CONCLUSIONS: These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.

8.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200325

RESUMEN

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Asunto(s)
Envejecimiento/genética , COVID-19/genética , COVID-19/fisiopatología , Islas de CpG , Acortamiento del Telómero , Telómero/metabolismo , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/sangre , Biomarcadores , COVID-19/complicaciones , COVID-19/etiología , Metilación de ADN , Dipeptidil Peptidasa 4/sangre , Epigenómica , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Microbiota-Huesped , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Sobrevivientes , Síndrome Post Agudo de COVID-19
9.
Front Endocrinol (Lausanne) ; 11: 591039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281746

RESUMEN

Objective/Purpose: The aryl hydrocarbon receptor (AHR) pathway plays a critical role in the biology of Growth Hormone (GH)-secreting pituitary tumor (somatotropinoma). Germline rs2066853 AHR variant was found to be more frequent among acromegaly patients and associated with a more severe disease with larger invasive somatropinoma, and with resistance to somatostatin analogs treatment in patients living in polluted areas. However, no somatic changes in AHR gene have been reported so far in acromegaly patients. On that basis, the aim of the study was to assess at the somatic level the AHR gene status encompassing exon 10 region, also because of the high rate of variants found in this genomic region. Methods: A cohort of 13 patients aged 20-76 years with biochemical, clinical and histological diagnosis of somatotropinoma was studied. DNA and RNA from pituitary tumor histological samples have been extracted and analyzed by PCR and direct sequencing for AHR gene variants, and compared with corresponding patients' germline DNA as well as normal pituitary tissue as reference control. Results: A degenerated letter codes in the region corresponding to AHR exon 10 (c.1239-c.2056) was detected in somatotropinomas-derived DNA but not in that of matched germline and pituitary normal tissue. By multiple PCR and sequencing analysis, we observed amplification only before codon 1246 and after codon 1254, confirming the presence of a tumor-restricted somatic deletion in the 5' upstream region of AHR exon 10. Analysis of PCR-amplified cDNA revealed a wildtype sequence of exon 9 and 10 in normal pituitary tissue, and a wildtype sequence of exon 9 and 10 up to codon 1246 and no sequence after the deletion region (c.1246-c.1254) in 6 out of 9 tumor samples. Patients carrying the germline rs2066853 AHR variant showed no somatic LOH at the corresponding genetic locus. Conclusion: This is the first demonstration of a recurrent somatic deletion in the exon 10 of the AHR gene in somatotropinomas. The functional impact of this genetic finding needs to be clarified.


Asunto(s)
Adenoma/genética , Adenoma/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Exones , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Receptores de Hidrocarburo de Aril/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Eliminación de Gen , Humanos , Pérdida de Heterocigocidad , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
10.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375130

RESUMEN

The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes growth and progression in prostate cancer (PCa); however, little is known about its possible impact in PCa metabolism. The aim of this work has been the assessment of the metabolic reprogramming associated with MALAT1 silencing in human PCa cells and in an ex vivo model of organotypic slice cultures (OSCs). Cultured cells and OSCs derived from primary tumors were transfected with MALAT1 specific gapmers. Cell growth and survival, gene profiling, and evaluation of targeted metabolites and metabolic enzymes were assessed. Computational analysis was made considering expression changes occurring in metabolic markers following MALAT1 targeting in cultured OSCs. MALAT1 silencing reduced expression of some metabolic enzymes, including malic enzyme 3, pyruvate dehydrogenase kinases 1 and 3, and choline kinase A. Consequently, PCa metabolism switched toward a glycolytic phenotype characterized by increased lactate production paralleled by growth arrest and cell death. Conversely, the function of mitochondrial succinate dehydrogenase and the expression of oxidative phosphorylation enzymes were markedly reduced. A similar effect was observed in OSCs. Based on this, a predictive algorithm was developed aimed to predict tumor recurrence in a subset of patients. MALAT1 targeting by gapmer delivery restored normal metabolic energy pathway in PCa cells and OSCs.

11.
Oncotarget ; 11(45): 4155-4168, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33227047

RESUMEN

TWIST1 is a basic helix-loop-helix transcription factor, and one of the master Epithelial-to-Mesenchymal Transition (EMT) regulators. We show that tumor suppressor miR-145-5p controls TWIST1 expression in an immortalized prostate epithelial cell line and in a tumorigenic prostate cancer-derived cell line. Indeed, shRNA-mediated miR-145-5p silencing enhanced TWIST1 expression and induced EMT-associated malignant properties in these cells. However, we discovered that the translational inhibitory effect of miR-145-5p on TWIST1 is lost in 22Rv1, another prostate cancer cell line that intrinsically expresses high levels of the CPEB1 cytoplasmic polyadenylation element binding protein. This translational regulator typically reduces TWIST1 translation efficiency by shortening the TWIST1 mRNA polyA tail. However, our results indicate that the presence of CPEB1 also interferes with the binding of miR-145-5p to the TWIST1 mRNA 3'UTR. Mechanistically, CPEB1 binding to its first cognate site either directly hampers the access to the miR-145-5p response element or redirects the cleavage/polyadenylation machinery to an intermediate polyadenylation site, resulting in the elimination of the miR-145-5p binding site. Taken together, our data support the notion that the tumor suppressive activity of miR-145-5p on TWIST1 translation, consequently on EMT, self-renewal, and migration, depends on the CPEB1 expression status of the cancer cell. A preliminary prospective study using clinical samples suggests that reconsidering the relative status of miR-145-5p/TWIST1 and CPEB1 in the tumors of prostate cancer patients may bear prognostic value.

12.
Clin Epigenetics ; 12(1): 156, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087172

RESUMEN

Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Epigénesis Genética , Regulación Viral de la Expresión Génica , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , COVID-19 , Infecciones por Coronavirus/inmunología , Citocinas/genética , Citocinas/inmunología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Inflamación/inmunología , Pandemias , Neumonía Viral/inmunología , Procesamiento Postranscripcional del ARN , SARS-CoV-2
13.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121118

RESUMEN

The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non-senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.


Asunto(s)
Antineoplásicos/uso terapéutico , Enfermedad Crónica/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Senescencia Celular , Enfermedad Crónica/mortalidad , Ensayos Clínicos como Asunto , Salud Global , Humanos , Neoplasias/mortalidad , Transducción de Señal/efectos de los fármacos
14.
Mol Cell Endocrinol ; 511: 110864, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413384

RESUMEN

Prostate cancer (PCa) is a sex-steroid hormone-dependent cancer in which estrogens play a critical role in both initiation and progression. Recently, several long non-coding RNAs (lncRNAs) have been associated with PCa and are supposedly playing a pivotal role in the biology and progression of this type of cancer. In this review, we focused on some lncRNAs that are known for their androgen and estrogen transcriptional responsiveness in PCa. Specifically, we summarized recent pieces of evidence about lncRNAs NEAT1, H19, MALAT1, and HOTAIR, in estrogen signaling, emphasizing their role in PCa progression and the acquisition of a castration-resistant phenotype. Here, the reader will find information about lncRNAs present in estrogen-dependent transcriptional complexes. The potential role of lncRNA/estrogen signaling as a novel pathway for PCa treatment will be discussed.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Modelos Biológicos , Neoplasias de la Próstata/tratamiento farmacológico , ARN Largo no Codificante/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico
15.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041153

RESUMEN

Neuroendocrine prostate cancer (NEPC) can arise de novo, but much more commonly occurs as a consequence of a selective pressure from androgen deprivation therapy or androgen receptor antagonists used for prostate cancer (PCa) treatment. The process is known as neuroendocrine transdifferentiation. There is little molecular characterization of NEPCs and consequently there is no standard treatment for this kind of tumors, characterized by highly metastases rates and poor survival. For this purpose, we profiled 54 PCa samples with more than 10-years follow-up for gene and miRNA expression. We divided samples into two groups (NE-like vs. AdenoPCa), according to their clinical and molecular features. NE-like tumors were characterized by a neuroendocrine fingerprint made of known neuroendocrine markers and novel molecules, including long non-coding RNAs and components of the estrogen receptor signaling. A gene expression signature able to predict NEPC was built and tested on independently published datasets. This study identified molecular features (protein-coding, long non-coding, and microRNAs), at the time of surgery, that may anticipate the NE transformation process of prostate adenocarcinoma. Our results may contribute to improving the diagnosis and treatment of this subgroup of tumors for which traditional therapy regimens do not show beneficial effects.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Neuroendocrino/genética , MicroARNs/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Adenocarcinoma/tratamiento farmacológico , Anciano , Antagonistas de Receptores Androgénicos/efectos adversos , Antagonistas de Receptores Androgénicos/uso terapéutico , Andrógenos/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Transdiferenciación Celular/fisiología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Transducción de Señal
16.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941147

RESUMEN

RNA epigenetics is perhaps the most recent field of interest for translational epigeneticists. RNA modifications create such an extensive network of epigenetically driven combinations whose role in physiology and pathophysiology is still far from being elucidated. Not surprisingly, some of the players determining changes in RNA structure are in common with those involved in DNA and chromatin structure regulation, while other molecules seem very specific to RNA. It is envisaged, then, that new small molecules, acting selectively on RNA epigenetic changes, will be reported soon, opening new therapeutic interventions based on the correction of the RNA epigenetic landscape. In this review, we shall summarize some aspects of RNA epigenetics limited to those in which the potential clinical translatability to cardiovascular disease is emerging.


Asunto(s)
Enfermedades Cardiovasculares , Epigénesis Genética , Conformación de Ácido Nucleico , ARN , Transducción de Señal/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Humanos , ARN/genética , ARN/metabolismo
17.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426484

RESUMEN

Estrogen and hypoxia promote an aggressive phenotype in prostate cancer (PCa), driving transcription of progression-associated genes. Here, we molecularly dissect the contribution of long non-coding RNA H19 to PCa metastatic potential under combined stimuli, a topic largely uncovered. The effects of estrogen and hypoxia on H19 and cell adhesion molecules' expression were investigated in PCa cells and PCa-derived organotypic slice cultures (OSCs) by qPCR and Western blot. The molecular mechanism was addressed by chromatin immunoprecipitations, overexpression, and silencing assays. PCa cells' metastatic potential was analyzed by in vitro cell-cell adhesion, motility test, and trans-well invasion assay. We found that combined treatment caused a significant H19 down-regulation as compared with hypoxia. In turn, H19 acts as a transcriptional repressor of cell adhesion molecules, as revealed by up-regulation of both ß3 and ß4 integrins and E-cadherin upon H19 silencing or combined treatment. Importantly, H19 down-regulation and ß integrins induction were also observed in treated OSCs. Combined treatment increased both cell motility and invasion of PCa cells. Lastly, reduction of ß integrins and invasion was achieved through epigenetic modulation of H19-dependent transcription. Our study revealed that estrogen and hypoxia transcriptionally regulate, via H19, cell adhesion molecules redirecting metastatic dissemination from EMT to a ß integrin-mediated invasion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Integrina beta3/genética , Integrina beta4/genética , Neoplasias de la Próstata/genética , ARN Largo no Codificante/metabolismo , Animales , Adhesión Celular , Línea Celular , Línea Celular Tumoral , Estrógenos/metabolismo , Estrógenos/farmacología , Humanos , Hipoxia , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/fisiopatología , Ratas , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Front Physiol ; 10: 369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191327

RESUMEN

Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.

19.
Oncogene ; 38(27): 5413-5424, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30967634

RESUMEN

Inhibitors of Vascular Endothelial Growth Factor target both tumor vasculature and cancer cells that have hijacked VEGF Receptors (VEGFRs) signaling for tumor growth-promoting activities. It is important to get precise insight in the specificity of cell responses to these antiangiogenic drugs to maximize their efficiency and minimize off-target systemic toxicity. Here we report that Axitinib, an inhibitor of VEGFRs currently in use as a second line treatment for advanced renal cell carcinoma, promotes senescence of human endothelial cells in vitro. A one-hour pulse of Axitinib is sufficient for triggering cell senescence. Mechanistically, this requires oxidative stress-dependent activation of the Ataxia Telangiectasia Mutated (ATM) kinase. Axitinib-mediated senescence promoting action is prevented by short-term treatment with antioxidants or ATM inhibitors, which conversely fail to prevent senescence induced by the DNA-damaging drug doxorubicin. Coherently, induction of oxidative stress-related genes distinguishes the response of endothelial cells to Axitinib from that to doxorubicin. Importantly, an Axitinib pulse causes cell senescence in glioblastoma cells. However, neither antioxidants nor ATM inhibitors can reverse this phenotype. Thus, antioxidants may selectively protect endothelial cells from Axitinib by decreasing systemic toxicity and maintaining a functional vascularization necessary for efficient delivery of chemotherapeutic drugs within the tumor mass.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Axitinib/farmacología , Senescencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antioxidantes/farmacología , Células Endoteliales/metabolismo , Activación Enzimática , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/prevención & control , Inhibidores de Proteínas Quinasas/administración & dosificación
20.
FASEB J ; 33(3): 4107-4123, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30526058

RESUMEN

The epigenetic enzyme p300/CBP-associated factor (PCAF) belongs to the GCN5-related N-acetyltransferase (GNAT) family together with GCN5. Although its transcriptional and post-translational function is well characterized, little is known about its properties as regulator of cell metabolism. Here, we report the mitochondrial localization of PCAF conferred by an 85 aa mitochondrial targeting sequence (MTS) at the N-terminal region of the protein. In mitochondria, one of the PCAF targets is the isocitrate dehydrogenase 2 (IDH2) acetylated at lysine 180. This PCAF-regulated post-translational modification might reduce IDH2 affinity for isocitrate as a result of a conformational shift involving predictively the tyrosine at position 179. Site-directed mutagenesis and functional studies indicate that PCAF regulates IDH2, acting at dual level during myoblast differentiation: at a transcriptional level together with MyoD, and at a post-translational level by direct modification of lysine acetylation in mitochondria. The latter event determines a decrease in IDH2 function with negative consequences on muscle fiber formation in C2C12 cells. Indeed, a MTS-deprived PCAF does not localize into mitochondria, remains enriched into the nucleus, and contributes to a significant increase of muscle-specific gene expression enhancing muscle differentiation. The role of PCAF in mitochondria is a novel finding shedding light on metabolic processes relevant to early muscle precursor differentiation.-Savoia, M., Cencioni, C., Mori, M., Atlante, S., Zaccagnini, G., Devanna, P., Di Marcotullio, L., Botta, B., Martelli, F., Zeiher, A. M., Pontecorvi, A., Farsetti, A., Spallotta, F., Gaetano, C. P300/CBP-associated factor regulates transcription and function of isocitrate dehydrogenase 2 during muscle differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteína p300 Asociada a E1A/genética , Isocitrato Deshidrogenasa/genética , Transcripción Genética/genética , Acetilación , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Lisina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Fibras Musculares Esqueléticas/fisiología , Mioblastos/fisiología , Procesamiento Proteico-Postraduccional/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA