Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Iran J Pharm Res ; 22(1): e135501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116556

RESUMEN

Background: Expression of the miR-34 family, including miR-34a/b/c, has been reported to inhibit the progression of several cancer types by inhibiting cell proliferation and inducing apoptosis. Objectives: We attempted to investigate the effect of SW480 cell transfection with miR-34c-5p mimics on cell proliferation. Methods: To do this, SW480 colon cancer cell line was transfected with miR-34c-5p mimics, scramble sequence, and the vehicle in PBS mock, and then cell proliferation was assessed by MTT assay. The population of cells in cell cycle phases, ROS generation, and apoptosis rate were evaluated by flow cytometry. Additionally, we determined the relative expression of apoptotic genes through real-time PCR technique. Results: We observed a reduced proliferation rate in cells transfected with miR-34c-5p compared to the control group (P <0.05). We also found that miR-34c-5p caused a significant increase in apoptosis rate (P < 0.001) and cell cycle arrest in the G0 and G1 phases (P < 0.05). Moreover, a significant increase was reported in the expression of pro-apoptotic genes, including BAK (P < 0.001), BAX and BAD (P < 0.0001), and Caspase 7/9 (P < 0.0001). Conclusions: However, no remarkable difference was seen in the expression of MCL1, BCL2, and CASPASE 3 genes. Our conclusion is that overexpression of miR-34c-5p could be considered a promising approach for colorectal cancer treatment.

2.
Iran J Biotechnol ; 21(2): e3288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37228628

RESUMEN

Background: Over expression of Reteplase enzyme has already been studies in the periplasmic space of Escherichia coli (E. coli). However, the role different factors in its expresssin rate remained to be elucidated. Objectives: Optical cell density (OD), IPTG concentration, and expression time are highly effective in the protein expression rates. Therefore, we aimed to determine the optimum levels of these factors for reteplase expression using response surface methodology (RSM). Materials and Methods: The pET21b plasmid was used to sub-clone the designed reteplase gene. Then, the gene was transformed into E. coli BL21 strain. Induction of expression was done by IPTG and analyzed by the SDS page. experiments were designed using the RMS, while the effects of different conditions were evaluated using the Real time-PCR. Results: Sequence optimization removed all undesirable sequences of the designed gene. Transformation into E. coli BL21 was confirmed with an 1152 bp band on the agarose gel. A 39 kDa expression band on the SDS gel confirmed the gene expression. Performing 20 RSM-designed experiments, the optimum levels for IPTG concentration and OD were determined as 0.34mM and 5.6, respectively. Moreover, the optimum level of expression time was demonstrated to be 11.91 hours. The accuracy of the regression model for reteplase overexpression was confirmed by an F-value equal to 25.31 and a meager probability value [(Prob > F) < 0.0001]. The real-time-PCR results indicated that the performed calculations were highly accurate. Conclusion: The obtained results indicate that IPTG concentration, OD, and expression time are significantly involved in the augmentation of recombinant reteplase expression. To the best of our knowledge, this is the first study to assess the combined effect of these factors on reteplase expression. Further RSM-based experiments would bring about new insights regarding the best conditions for reteplase expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...