Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Vet Res ; 55(1): 98, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095901

RESUMEN

The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Animales , Ciervos/genética , Dinamarca , Variación Genética , Genotipo , Alemania/epidemiología , Polimorfismo Genético , Proteínas Priónicas/genética , Priones/genética , Enfermedad Debilitante Crónica/genética , Enfermedad Debilitante Crónica/epidemiología
2.
Pathogens ; 13(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39204230

RESUMEN

After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.

3.
One Health ; 18: 100674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010962

RESUMEN

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. Up to now, no approved treatment nor a globally licensed vaccine is available. Several recombinant HEV vaccines have been developed to protect against HEV infection in humans, including the commercially available Hecolin vaccine, which are mainly based on HEV genotype 1. However, the efficacy of these vaccines against other HEV genotypes, especially genotype 3 is unknown. In this study, we evaluated the protective efficacy of Hecolin® and a novel genotype 3-based vaccine p239(gt3) against HEV-3 in a pig infection model. Pigs were divided into three groups: one group was vaccinated with Hecolin®, the second group was vaccinated with p239(gt3), and the control group received no vaccine. All pigs were subsequently challenged with HEV genotype 3 to assess the effectiveness of the vaccines. Although all immunised animals developed a high titer of neutralizing antibodies, the results showed that both vaccine applications could not provide complete protection against HEV (gt3) infection: Two out of four animals of the Hecolin® group displayed even virus shedding, and viral RNA could be detected in bile and/or liver of three out of four animals in both vaccination groups. Only one out of four animals in each group was fully protected. Neither Hecolin® nor the novel p239(gt3) vaccine provided sufficient protection against genotype 3 infection. While Hecolin® only partial protected pigs from HEV shedding, the novel p239(gt3) vaccine was at least able to prevent infected pigs from virus shedding. The results highlight the need for further development of HEV vaccines that exhibit broad protection against multiple HEV genotypes and the use of appropriate animal infection models.

4.
Pathogens ; 12(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513806

RESUMEN

Usutu virus (USUV) and West Nile virus (WNV) are closely related pathogens circulating between mosquitoes and birds, but also infecting mammals as dead-end hosts. Both viruses share the same susceptible hosts, vectors, and even distribution areas in Central Europe. The aim of the study was, therefore, to understand their amplification potential and interference upon a successive infection. Two-week old geese were initially infected with an USUV isolate from Germany and with a German WNV isolate17 days later. The geese were susceptible to the USUV and the WNV infections, as evidenced by specific flavivirus antibodies in all of the birds. Furthermore, in half of the USUV-inoculated geese, USUV genomes were detected in the blood and swab samples 2-4 days post-infection. Additionally, most of the examined organs contained USUV genomes and showed signs of encephalitis and ganglioneuritis. Interestingly, upon a sequential infection with WNV, the genome copy numbers in all of the examined samples were significantly lower and less frequent than after a WNV mono-infection. Similarly, the histopathological lesions were less severe. Therefore, it can be concluded that a previous USUV infection can protect birds from clinical disease in a subsequent WNV infection.

5.
Pathogens ; 12(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37375443

RESUMEN

Usutu virus (USUV) and West Nile virus (WNV) are known to cause diseases and mortalities in bird populations. Since 2010/2011, USUV has circulated in Germany and spread nationwide, while WNV was only introduced into East Germany in 2018. The zoological garden investigated is located in Northern Germany, where USUV infections in wild birds have been detected for several years. In this longitudinal study conducted over a four-year period, zoo birds were sampled biannually and screened for molecular and serological evidence of USUV and WNV. USUV genomes were detected in eight of the sampled birds and whole-genome sequences revealed the circulation of USUV lineages Europe 3 and Africa 3. Of the eight birds infected with USUV during the study period, four died after the infection, while four survived without displaying clinical signs. Furthermore, in a few of the birds, a USUV (re-)infection was confirmed on a serological level with three birds producing USUV-neutralizing antibodies (nAbs) over a period of four years. Nonetheless, in two birds sampled throughout this longitudinal study, neither a USUV nor a WNV infection was evident. In 2022, WNV nAbs were detected for the first time in a juvenile zoo bird, indicating the introduction of the virus into this region.

6.
Pathogens ; 12(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36839625

RESUMEN

Bovine spongiform encephalopathy (BSE) belongs to the group of transmissible spongiform encephalopathies and is associated with the accumulation of a pathological isoform of the host-encoded glycoprotein, designated prion protein (PrPSc). Classical BSE (C-type) and two atypical BSE forms (L- and H-type) are known, and can be discriminated by biochemical characteristics. The goal of our study was to identify type-specific PrPSc profiles by using Immunohistochemistry. In our study, brain samples from 21 cattle, intracerebrally inoculated with C-, H-, and L-type BSE, were used. In addition, the corresponding samples from three orally C-type BSE infected animals were also included. From all animals, a lesion and PrPSc-profiles of six brain regions were determined. The lesion profile and the neuroanatomical distribution of PrPSc was highly consistent between the groups, but the immunohistochemical analysis revealed a distinct PrPSc profile for the different BSE-types, which included both the topographic and cellular pattern of PrPSc. This qualitative and quantitative analysis of PrPSc affected structures sheds new light into the pathogenesis of the different BSE types. Furthermore, immunohistochemical characterization is supported as an additional diagnostic tool in BSE surveillance programs, especially when only formalin-fixed tissue samples are available.

7.
Transbound Emerg Dis ; 69(6): 3317-3324, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35986711

RESUMEN

The hepatitis E virus (HEV) is the main cause of viral acute hepatitis in the world, affecting more than 20 million people annually. During the acute phase of infection, HEV can be detected in various body fluids, which has a significant impact in terms of transmission, diagnosis or extrahepatic manifestations. Several studies have isolated HEV in the genitourinary tract of humans and animals, which could have important clinical and epidemiological implications. So, our main objective was to evaluate the presence of HEV in testis of naturally infected wild boars (Sus scrofa). For it, blood, liver, hepatic lymph node and testicle samples were collected from 191 male wild boars. The presence of HEV was evaluated in serum by PCR, as well as in tissues by PCR and immunohistochemistry. Four animals (2.09%; 95%CI: 0.82-5.26) showed detectable HEV RNA in serum, being confirmed the presence of HEV-3f genotype in three of them by phylogenetic analysis. HEV was also detected in liver and/or hepatic lymph nodes of the four animals by RT-PCR, as well as by immunohistochemistry analysis. Only one of these wild boars also showed detectable viral load in testis, observing HEV-specific labelling in a small number of fibroblasts and some Sertoli cells. Our results confirm the presence of HEV genotype 3 in naturally infected wild boar testis, although no associated tissue damage was evidenced. This study does not allow us to discard semen as a possible source of HEV transmission in suids. Future experimental studies are necessary to evaluate the impact of HEV genotype 3 on fertility and the possibility of transmission through sexual contact in this specie.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Enfermedades de los Porcinos , Humanos , Animales , Masculino , Porcinos , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Testículo , Filogenia , ARN Viral/genética , Genotipo , Sus scrofa
8.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743187

RESUMEN

Transmissible spongiform encephalopathies (TSE), caused by abnormal prion protein (PrPSc), affect many species. The most classical scrapie isolates harbor mixtures of strains in different proportions. While the characterization of isolates has evolved from using wild-type mice to transgenic mice, no standardization is established yet. Here, we investigated the incubation period, lesion profile and PrPSc profile induced by well-defined sheep scrapie isolates, bovine spongiform encephalopathy (BSE) and ovine BSE after intracerebral inoculation into two lines of ovine PrP (both ARQ/ARQ) overexpressing transgenic mice (Tgshp IX and Tgshp XI). All isolates were transmitted to both mouse models with an attack rate of almost 100%, but genotype-dependent differences became obvious between the ARQ and VRQ isolates. Surprisingly, BSE induced a much longer incubation period in Tgshp XI compared to Tgshp IX. In contrast to the histopathological lesion profiles, the immunohistochemical PrPSc profiles revealed discriminating patterns in certain brain regions in both models with clear differentiation of both BSE isolates from scrapie. These data provide the basis for the use of Tgshp IX and XI mice in the characterization of TSE isolates. Furthermore, the results enable a deeper appreciation of TSE strain diversity using ovine PrP overexpressing transgenic mice as a biological prion strain typing approach.


Asunto(s)
Encefalopatía Espongiforme Bovina , Priones , Scrapie , Animales , Encéfalo/metabolismo , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Priones/metabolismo , Scrapie/metabolismo , Ovinos
9.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746790

RESUMEN

West Nile virus (WNV) is an emerging infectious pathogen circulating between mosquitoes and birds but also infecting mammals. WNV has become autochthonous in Germany, causing striking mortality rates in avifauna and occasional diseases in humans and horses. We therefore wanted to assess the possible role of free-ranging poultry in the WNV transmission cycle and infected 15 goslings with WNV lineage 2 (German isolate). The geese were monitored daily and sampled regularly to determine viremia, viral shedding, and antibody development by molecular and serological methods. Geese were euthanized at various time points post-infection (pi). All infected geese developed variable degrees of viremia from day 1 to day 10 (maximum) and actively shed virus from days 2 to 7 post-infection. Depending on the time of death, the WN viral genome was detected in all examined tissue samples in at least one individual by RT-qPCR and viable virus was even re-isolated, except for in the liver. Pathomorphological lesions as well as immunohistochemically detectable viral antigens were found mainly in the brain. Furthermore, all of the geese seroconverted 6 days pi at the latest. In conclusion, geese are presumably not functioning as important amplifying hosts but are suitable sentinel animals for WNV surveillance.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales , Gansos , Caballos , Mamíferos , Viremia/veterinaria , Virus del Nilo Occidental/genética
10.
Microorganisms ; 10(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35456857

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are important flaviviruses circulating in Germany. While USUV was first reported more than 10 years ago, WNV has only reached the country in 2018. Wild birds are important amplifying hosts for both viruses. Therefore, we have been monitoring the bird population in different regions of Germany by a previously established network for many years. This report summarizes the results of molecular and/or serological methods of 2345 blood samples from birds of 22 different orders and over 2900 bird carcasses from 2019 and 2020. USUV RNA circulation was found in different regions of Germany, with emphasis on USUV lineages Europe 3 and Africa 3. Increased evidence of USUV lineage Europe 2 was detected in eastern Germany. WNV RNA was found only in birds from the eastern part of the country. The seroprevalence for USUV was between 3.11% and 7.20% in all three regions investigated, whereas the WNV seroprevalence spanned from 14.77% to 16.15% in eastern Germany, with a noticeable tendency for a westward and southward expansion in both years. Thus, wild bird monitoring for WNV and USUV can serve as an early warning system for a human exposure risk.

11.
Sci Rep ; 11(1): 24191, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921222

RESUMEN

Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.


Asunto(s)
Infecciones por Flavivirus/genética , Flavivirus/genética , Animales , Enfermedades de las Aves/genética , Encéfalo , Brotes de Enfermedades , Genoma Viral , Alemania , Corazón , Historia del Siglo XXI , Inmunohistoquímica , Pulmón , Páncreas , Filogenia , Estudios Retrospectivos , Pájaros Cantores/metabolismo , Bazo , Estrigiformes/metabolismo
12.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638780

RESUMEN

Portugal was among the first European countries to report cases of Atypical Scrapie (ASc), the dominant form of Transmissible Spongiform Encephalopathy (TSE) in Portuguese small ruminants. Although the diagnostic phenotypes observed in Portuguese ASc cases seem identical to those described for Nor98, unequivocal identification requires TSE strain-typing using murine bioassays. In this regard, we initiated characterization of ASc isolates from sheep either homozygous for the ARQ genotype or the classical scrapie-resistant ARR genotype. Isolates from such genotypes were transmitted to TgshpXI mice expressing ovine PrPARQ. Mean incubation periods were 414 ± 58 and 483 ± 107 days in mice inoculated with AL141RQ/AF141RQ and AL141RR/AL141RR sheep isolates, respectively. Both isolates produced lesion profiles similar to French ASc Nor98 'discordant cases', where vacuolation was observed in the hippocampus (G6), cerebral cortex at the thalamus (G8) level, cerebellar white matter (W1) and cerebral peduncles (W3). Immunohistochemical PrPSc deposition was observed in the hippocampus, cerebellar cortex, cerebellar white matter and cerebral peduncles in the form of aggregates and fine granules. These findings were consistent with previously reported cases of ASc Nor98 transmitted to transgenic TgshpXI mice, confirming that the ASc strain present in Portuguese sheep corresponds to ASc Nor98.


Asunto(s)
Genotipo , Enfermedades por Prión , Proteínas Priónicas , Scrapie , Animales , Ratones , Ratones Transgénicos , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Scrapie/genética , Scrapie/metabolismo , Ovinos
13.
Viruses ; 13(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34452347

RESUMEN

The Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus. Despite its continuous circulation in Europe, knowledge on the pathology, cellular and tissue tropism and pathogenetic potential of different circulating viral lineages is still fragmentary. Here, macroscopic and microscopic evaluations are performed in association with the study of cell and tissue tropism and comparison of lesion severity of two circulating virus lineages (Europe 3; Africa 3) in 160 Eurasian blackbirds (Turdus merula) in the Netherlands. Results confirm hepatosplenomegaly, coagulative necrosis and lymphoplasmacytic inflammation as major patterns of lesions and, for the first time, vasculitis as a novel virus-associated lesion. A USUV and Plasmodium spp. co-infection was commonly identified. The virus was associated with lesions by immunohistochemistry and was reported most commonly in endothelial cells and blood circulating and tissue mononucleated cells, suggesting them as a major route of entry and spread. A tropism for mononuclear phagocytes cells was further supported by viral labeling in multinucleated giant cells. The involvement of ganglionic neurons and epithelial cells of the gastrointestinal tract suggests a possible role of oral transmission, while the involvement of feather follicle shafts and bulbs suggests their use as a diagnostic sample for live bird testing. Finally, results suggest similar pathogenicity for the two circulating lineages.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Flavivirus/veterinaria , Flavivirus/fisiología , Passeriformes/virología , Animales , Enfermedades de las Aves/patología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/patogenicidad , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/virología , Países Bajos , Fagocitos/virología , Virulencia
14.
Viruses ; 13(7)2021 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199054

RESUMEN

Nairobi sheep disease orthonairovirus (NSDV) is a zoonotic tick-borne arbovirus, which causes severe gastroenteritis in small ruminants. To date, the virus is prevalent in East Africa and Asia. However, due to climate change, including the spread of transmitting tick vectors and increased animal movements, it is likely that the distribution range of NSDV is enlarging. In this project, sheep and cattle (hitherto classified as resistant to NSDV) were experimentally infected with NSDV for a comparative study of the species-specific pathogenesis. For this purpose, several new diagnostic assays (RT-qPCR, ELISA, iIFA, mVNT, PRNT) were developed, which will also be useful for future epidemiological investigations. All challenged sheep (three different doses groups) developed characteristic clinical signs, transient viremia and virus shedding-almost independent on the applied virus dose. Half of the sheep had to be euthanized due to severe clinical signs, including hemorrhagic diarrhea. In contrast, the course of infection in cattle was only subclinical. However, all ruminants showed seroconversion-implying that, indeed, both species are susceptible for NSDV. Hence, not only sheep but also cattle sera can be included in serological monitoring programs for the surveillance of NSDV occurrence and spread in the future.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Enfermedad de los Ovinos de Nairobi/diagnóstico , Enfermedad de los Ovinos de Nairobi/patología , Nairovirus/genética , Nairovirus/patogenicidad , Enfermedades de las Ovejas/diagnóstico , Animales , Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/inmunología , Femenino , Masculino , Técnicas de Diagnóstico Molecular/métodos , Enfermedad de los Ovinos de Nairobi/epidemiología , Enfermedad de los Ovinos de Nairobi/inmunología , Nairovirus/inmunología , Seroconversión , Pruebas Serológicas/métodos , Ovinos/virología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/inmunología , Garrapatas/virología
15.
Viruses ; 13(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652845

RESUMEN

Dugbe orthonairovirus (DUGV) is a tick-borne arbovirus within the order Bunyavirales. DUGV was first isolated in Nigeria, but virus isolations in ten further African countries indicate that DUGV is widespread throughout Africa. Humans can suffer from a mild febrile illness, hence, DUGV is classified as a biosafety level (BSL) 3 agent. In contrast, no disease has been described in animals, albeit serological evidence exists that ruminants are common hosts and may play an important role in the transmission cycle of this neglected arbovirus. In this study, young sheep and calves were experimentally inoculated with DUGV in order to determine their susceptibility and to study the course of infection. Moreover, potential antibody cross-reactivities in currently available diagnostic assays for Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) were assessed as DUGV is distantly related to CCHFV. Following subcutaneous inoculation, none of the animals developed clinical signs or viremia. However, all ruminants seroconverted, as demonstrated by two DUGV neutralization test formats (micro-virus neutralization test (mVNT), plaque reduction (PRNT)), by indirect immunofluorescence assays and in bovines by a newly developed DUGV recombinant N protein ELISA. Sera did not react in commercial CCHFV ELISAs, whereas cross-reactivities were observed by immunofluorescence and immunoblot assays.


Asunto(s)
Infecciones por Arbovirus/inmunología , Arbovirus/inmunología , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/inmunología , Animales , Anticuerpos Antivirales/inmunología , Infecciones por Arbovirus/virología , Bovinos , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Fiebre Hemorrágica de Crimea/virología , Pruebas de Neutralización/métodos , Nigeria , Rumiantes/inmunología , Rumiantes/virología , Pruebas Serológicas/métodos , Ovinos , Garrapatas/inmunología , Garrapatas/virología
16.
Ticks Tick Borne Dis ; 12(4): 101693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33690089

RESUMEN

Tick-borne encephalitis virus (TBEV) is a vector-borne pathogen that can cause serious neurological symptoms in humans. Across large parts of Eurasia TBEV is found in three traditional subtypes: the European, the Siberian and the Far-eastern subtype. Small mammalian animals play an important role in the transmission cycle as they enable the spread of TBEV among the vector tick population. To assess the impact of TBEV infection on its natural hosts, outbred bank voles (Myodes glareolus) were inoculated with one out of four European TBEV strains. Three of these TBEV strains were recently isolated in Germany. The forth one was the TBEV reference strain Neudörfl. Sampling points at 7, 14, 28, and 56 days post inoculation allowed the characterization of the course of infection. At each time point, six animals per strain were euthanized and eleven organ samples (brain, spine, lung, heart, small and large intestine, liver, spleen, kidney, bladder, sexual organ) as well as whole blood and serum samples were collected. The majority of bank voles (92/96) remained clinically unaffected after the inoculation with TBEV, but still developed a systemic infection during the first week, which transitioned to a viraemia and an infestation of the brain in some animals for the remainder of the first month. Viral RNA was found in whole blood samples of several animals (50/96), but only in a small fraction of the corresponding serum samples (4/50). From the whole blood, virus was successfully reisolated in cell culture until 14 days after inoculation. Less than five percent of all inoculated bank voles (4/96) displayed signs of distress in combination with a rapid weight loss and had to be euthanized prematurely. Overall, the recently isolated TBEV strains showed marked differences, such as a more frequent development of long-term viraemia and a higher detection rate of viral RNA in various organs, in comparison to the reference strain Neudörfl. Overall, our data suggest that the bank vole is a potential amplifying host in the TBEV transmission cycle and appears to be highly adapted to circulating TBEV strains.


Asunto(s)
Arvicolinae , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/veterinaria , Enfermedades de los Roedores/virología , Animales , Encefalitis Transmitida por Garrapatas/virología , Femenino , Alemania , Masculino
17.
Transfusion ; 61(4): 1266-1277, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605455

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is the leading cause of acute hepatitis throughout the world. Increasing blood component transfusion-associated HEV infections highlight the need for reliable virus inactivation procedures for plasma derivatives from pooled plasma donations. STUDY DESIGN AND METHODS: An animal infection study was conducted to evaluate the efficiency of HEV inactivation by pasteurization during the manufacturing process of the von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate Haemate P/Humate-P (CSL Behring, Marburg, Germany). For this purpose, groups of pigs were inoculated with stabilized VWF/FVIII intermediate spiked with HEV-positive liver homogenate and exposed to increasing incubation times of 0, 3, 6, and 10 h at 60°C. Animals were evaluated for virus replication over 27 days and in a subsequent trial over 92 days. RESULTS: Virus replication was detected in animals up to the 6-h pasteurization group. In contrast, pasteurization for 10 h did not reveal virus detection when the observation period was 27 days. In an additional experiment using the 10-h pasteurized material, two individuals started virus excretion and seroconverted when the observation period was extended to 92 days. Based on the total infection rate (2 of 12) of the animals inoculated with the sample pasteurized for 10 h, a virus reduction factor of at least 4.7 log10 is calculated. CONCLUSION: This study demonstrates that pasteurization at 60°C for 10 h of an HEV-positive plasma derivative leads to the effective reduction of infectivity, resulting in a VWF/FVIII product with an appropriate margin of safety for HEV.


Asunto(s)
Transfusión de Componentes Sanguíneos/efectos adversos , Factor VIII/administración & dosificación , Virus de la Hepatitis E/genética , Hepatitis E/etiología , Pasteurización/métodos , Factor de von Willebrand/administración & dosificación , Enfermedad Aguda , Animales , Bioensayo/métodos , Factor VIII/análisis , Femenino , Calefacción/efectos adversos , Hepatitis/epidemiología , Hepatitis/virología , Hepatitis E/prevención & control , Masculino , Modelos Animales , Seguridad , Porcinos , Factores de Tiempo , Inactivación de Virus , Replicación Viral/genética , Factor de von Willebrand/análisis
18.
Transbound Emerg Dis ; 68(2): 907-919, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32743905

RESUMEN

West Nile virus (WNV), a zoonotic arbovirus, is a new epizootic disease in Germany and caused increasing avian and equine mortality since its first detection in 2018. The northern goshawk (Accipiter gentilis) is highly susceptible to fatal WNV disease and thus is considered as an indicator species for WNV emergence in European countries. Therefore, information regarding clinical presentation and pathological findings is important for identifying suspect cases and initiating further virological diagnostics. Between July and September 2019, ten free-ranging goshawks were admitted to the Small Animal Clinic of the Freie Universität Berlin with later confirmed WNV infection. Clinical, pathological and virological findings are summarized in this report. All birds were presented obtunded and in poor to cachectic body condition. Most of the birds were juveniles (8/10) and females (9/10). Neurologic abnormalities were observed in all birds and included stupor (3/10), seizures (3/10), head tremor (2/10), head tilt (2/10), ataxia (2/10) and monoplegia (2/10). Concurrent diseases like aerosacculitis/pneumonia (7/10), clinical infections with Eucoleus spp. and Trichomonas spp. (3/10), trauma-related injuries (3/10) and myiasis (2/10) were found. Blood analysis results were unspecific considering concurrent diseases. Median time of survival was two days. The most common pathological findings were meningoencephalitis (9/10), myocarditis (8/10), iridocyclitis (8/8) and myositis (7/10). WNV infection was diagnosed by real-time quantitative reverse transcription polymerase chain reaction and confirmed by serology and immunohistochemistry.


Asunto(s)
Enfermedades de las Aves/virología , Halcones , Fiebre del Nilo Occidental/veterinaria , Animales , Animales Salvajes , Enfermedades de las Aves/epidemiología , Femenino , Alemania/epidemiología , Inmunohistoquímica , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental
19.
Transbound Emerg Dis ; 68(2): 499-508, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32599659

RESUMEN

Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is the most important tick-transmitted arbovirus in Europe. It can cause severe illnesses in humans and in various animal species. The main mechanism for the spread of TBEV into new areas is considered to be the translocation of infected ticks. To find out whether ducks can function as a natural virus reservoir in addition to serving as passive transport vectors, we carried out an experimental TBEV challenge study to reveal their susceptibility and resulting pathogenesis. Nineteen ducks were inoculated subcutaneously with TBEV strain 'Neudoerfl' and monitored for 21 days. Blood, oropharyngeal and cloacal swabs were collected throughout the experiment and organ samples upon necropsy at the end of the study. All samples were tested for TBEV-RNA by real-time polymerase chain reaction. TBEV-specific antibodies were determined by virus neutralization test and ELISA. Organ samples were examined histopathologically and by immunohistochemistry. The inoculated ducks did not show any clinical symptoms. TBEV-specific RNA was detected in all brain samples as well as in a few blood and swab samples. Moreover, all challenged birds produced TBEV antibodies and showed a mild to severe acute to subacute necrotizing encephalitis. TBEV-specific antigen was detected in the brain of 14 ducks by immunohistochemistry. The short and low viremic phases, as well as the low virus load in tissues, suggest that ducks should not be considered as reservoir hosts. However, due to the high antibody levels, ducks can serve as sentinel species for the detection of natural TBEV foci.


Asunto(s)
Patos/virología , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/veterinaria , Animales , Encéfalo/virología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Pruebas Serológicas/veterinaria , Carga Viral , Zoonosis
20.
J Gen Virol ; 102(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589123

RESUMEN

While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4-6 months of age. The animals were kept in a free-ranging group for 10 years. Starting from 24 months post-transfusion, a thorough clinical examination was performed every 6 weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.


Asunto(s)
Transfusión Sanguínea/veterinaria , Encefalopatía Espongiforme Bovina/transmisión , Animales , Encéfalo/metabolismo , Bovinos , Encefalopatía Espongiforme Bovina/sangre , Encefalopatía Espongiforme Bovina/metabolismo , Resultados Negativos , Proteínas PrPSc/química , Proteínas PrPSc/aislamiento & purificación , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA