Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28381, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633648

RESUMEN

This paper proposes a new method for short-term electric load forecasting using a Ridgelet Neural Network (RNN) combined with a wavelet transform and optimized by a Self-Adapted (SA) Kho-Kho algorithm (SAKhoKho). The aim of this method is to improve the accuracy and reliability of electric load forecasting, which is essential for the planning and operation of competitive electrical networks. The proposed method uses the Wavelet Transform (WT) to decompose the load data into different frequency components and applies the RNN to each component separately. The RNN is, then, optimized by the SAKhoKho algorithm, which is an improved version of the KhoKho algorithm that can adapt the search parameters dynamically. The proposed method is trained and tested on the Zone Preliminary Billing Data from the PJM regulatory area, which is updated every two weeks based on the Intercontinental Exchange (ICE) figures. The proposed method is compared with six other cutting-edge methods from the literature, including SVM/SA, hybrid, ARIMA, MLP/PSO, CNN, and RNN/KhoKho/WT. The results show that the proposed method achieves the lowest Mean Absolute Error (MAE) of 7.7704 and Root Mean Square Error (RMSE) of 17.4132 among all the methods, indicating its superior performance. The proposed method can capture the temporal dependencies in the load data and optimize the RNN's weights to minimize the error function. The proposed method is a promising technique for electric load forecasting, as it can provide accurate and reliable predictions for the next hour based on the previous 24 h of data.

2.
Heliyon ; 10(6): e27555, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545225

RESUMEN

Proton Exchange Membrane Fuel Cells (PEMFCs) are promising sources of clean and renewable energy, but their performance and efficiency depend on an accurate modeling and identification of their system parameters. However, existing methods for PEMFC modeling suffer from drawbacks, such as slow convergence, high computational cost, and low accuracy. To address these challenges, this research work proposes an enhanced approach that combines a modified version of the SqueezeNet model, a deep learning architecture that reduces the number of parameters and computations, and a new optimization algorithm called the Modified Transient Search Optimization (MTSO) Algorithm, which improves the exploration and exploitation abilities of the search process. The proposed approach is applied to model the output voltage of the PEMFC under different operating conditions, and the results are compared with empirical data and two other state-of-the-art methods: Gated Recurrent Unit and Improved Manta Ray Foraging Optimization (GRU/IMRFO) and Grey Neural Network Model integrated with Particle Swarm Optimization (GNNM/PSO). The comparison shows that the proposed approach achieves the lowest Sum of Squared Errors (SSE) and the highest accuracy, demonstrating its superiority and effectiveness in PEMFC modeling. The proposed approach can facilitate the optimal design, control, and monitoring of PEMFC systems in various applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...