Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
PeerJ ; 12: e17316, 2024.
Article En | MEDLINE | ID: mdl-38699185

This review discusses the importance of homeostasis with a particular emphasis on the acid-base (AB) balance, a crucial aspect of pH regulation in living systems. Two primary organ systems correct deviations from the standard pH balance: the respiratory system via gas exchange and the kidneys via proton/bicarbonate secretion and reabsorption. Focusing on kidney functions, we describe the complexity of renal architecture and its challenges for experimental research. We address specific roles of different nephron segments (the proximal convoluted tubule, the loop of Henle and the distal convoluted tubule) in pH homeostasis, while explaining the physiological significance of ion exchange processes maintained by the kidneys, particularly the role of bicarbonate ions (HCO3-) as an essential buffer system of the body. The review will be of interest to researchers in the fields of physiology, biochemistry and molecular biology, which builds a strong foundation and critically evaluates existing studies. Our review helps identify the gaps of knowledge by thoroughly understanding the existing literature related to kidney acid-base homeostasis.


Acid-Base Equilibrium , Homeostasis , Kidney , Humans , Acid-Base Equilibrium/physiology , Kidney/metabolism , Kidney/physiology , Homeostasis/physiology , Hydrogen-Ion Concentration , Animals , Bicarbonates/metabolism
2.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672482

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Brain Neoplasms , Hyaluronan Receptors , Hyaluronic Acid , SOXB1 Transcription Factors , Spheroids, Cellular , Hyaluronic Acid/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Rats , Transcriptome/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Cells, Cultured , Cell Fusion
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673823

Energy metabolism plays a pivotal role in the pathogenesis of endometriosis. For the initial stages of the disease in adolescents, this aspect remains unexplored. The objective of this paper was to analyze the association of cellular and endosomal profiles of markers of glycolysis, mitochondrial biogenesis, apoptosis, autophagy and estrogen signaling in peritoneal endometriosis (PE) in adolescents. We included 60 girls aged 13-17 years in a case-control study: 45 with laparoscopically confirmed PE (main group) and 15 with paramesonephric cysts (comparison group). Samples of plasma and peritoneal fluid exosomes, endometrioid foci and non-affected peritoneum were tested for estrogen receptor (Erα/ß), hexokinase (Hex2), pyruvate dehydrogenase kinase (PDK1), glucose transporter (Glut1), monocarboxylate transporters (MCT1 and MCT2), optic atrophy 1 (OPA1, mitochondrial fusion protein), dynamin-related protein 1 (DRP1, mitochondrial fission protein), Bax, Bcl2, Beclin1, Bnip3, P38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1 (Hif-1α), mitochondrial voltage-dependent anion channel (VDAC) and transforming growth factor (TGFß) proteins as markers of estrogen signaling, glycolysis rates, mitochondrial biogenesis and damage, apoptosis and autophagy (Western-Blot and PCR). The analysis identified higher levels of molecules associated with proliferation (ERß), glycolysis (MCT2, PDK1, Glut1, Hex2, TGFß and Hif-1α), mitochondrial biogenesis (OPA1, DRP1) and autophagy (P38, Beclin1 and Bnip3) and decreased levels of apoptosis markers (Bcl2/Bax) in endometrioid foci compared to non-affected peritoneum and that in the comparison group (p < 0.05). Patients with PE had altered profiles of ERß in plasma and peritoneal fluid exosomes and higher levels of Glut1, MCT2 and Bnip3 in plasma exosomes (p < 0.05). The results of the differential expression profiles indicate microenvironment modification, mitochondrial biogenesis, estrogen reception activation and glycolytic switch along with apoptosis suppression in peritoneal endometrioid foci already in adolescents.


Apoptosis , Autophagy , Endometriosis , Glycolysis , Female , Humans , Adolescent , Endometriosis/metabolism , Endometriosis/pathology , Case-Control Studies , Organelle Biogenesis , Estrogen Receptor beta/metabolism , Signal Transduction , Estrogen Receptor alpha/metabolism , Biomarkers
4.
Immunol Cell Biol ; 102(5): 381-395, 2024.
Article En | MEDLINE | ID: mdl-38629182

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.


Cell Differentiation , Cellular Microenvironment , Kupffer Cells , Macrophages , Phenotype , Kupffer Cells/metabolism , Kupffer Cells/cytology , Macrophages/metabolism , Animals , Monocytes/metabolism , Monocytes/cytology , Hepatocyte Growth Factor/metabolism , Endothelial Cells/metabolism , Coculture Techniques , Humans , Cell Proliferation , Cells, Cultured , Liver/cytology , Liver/metabolism , Mice
5.
Biomedicines ; 12(3)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38540309

We studied the gene-expression patterns in specimens of tumor and peritumor tissue biopsies of 26 patients with head and neck carcinomas depending on smoking status. Histological and immunohistochemical examinations verified that all tumors belonged to the "classical" subgroup of head and neck carcinomas, and the HPV-negative tumor status was confirmed. The expression of 28 tumor-associated genes determined by RT-PCR was independent of patients' sex or age, TNM status, degree of differentiation, or tissue localization. Moreover, in peritumor tissue, none of the 28 genes were differentially expressed between the groups of smoking and nonsmoking patients. During oncotransformation in both studied groups, there were similar processes typical for HNSCC progression: the expression levels of paired keratins 4 and 13 were reduced, while the expression levels of keratin 17 and CD44 were significantly increased. However, further investigation revealed some distinctive features: the expression of the genes EGFR and TP63 increased significantly only in the nonsmoking group, and the expression of IL6, CDKN2A, EGF, and PITX1 genes changed only in the smoking group. In addition, correlation analysis identified several clusters within which genes displayed correlations in their expression levels. The largest group included 10 genes: TIMP1, TIMP2, WEE1, YAP, HIF1A, PI3KCA, UTP14A, APIP, PTEN, and SLC26A6. The genetic signatures associated with smoking habits that we have found may serve as a prerequisite for the development of diagnostic panels/tests predicting responses to different therapeutic strategies for HNSCC.

6.
Genes (Basel) ; 15(3)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38540340

There is still much to learn about the epigenetic mechanisms controlling gene expression during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study was to investigate the methylation status of CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC genes in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative HNSCC. Methods: Bisulfite conversion methods and methyl-sensitive analysis of high-resolution melting curves were used to quantify the methylation of genes. In all patients and across various subgroups (tongue carcinoma, laryngeal and other types of carcinomas T2, T3, T4 status; age before and after 50 years; smoking and non-smoking), there are consistent differences in the methylation levels in the SP1 gene in tumor DNA compared to normal. Results: The methylation of the SP1 gene in tumor DNA suppresses its expression, hinders HNSCC cell proliferation regulation, and could be a molecular indicator of malignant cell growth. The study of DNA methylation of various genes involved in carcinogenesis is promising because hypermethylated promoters can serve as potential biomarkers of disease.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Female , Humans , Male , Middle Aged , Carcinogenesis/genetics , Carcinoma, Squamous Cell/pathology , DNA/metabolism , DNA Methylation/genetics , Epithelial Cells/metabolism , Head and Neck Neoplasms/genetics , Papillomavirus Infections/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
7.
Front Oncol ; 14: 1348291, 2024.
Article En | MEDLINE | ID: mdl-38352894

Aim: This study presents an analysis (efficacy and toxicity) of outcomes in patients with esthesioneuroblastoma after pencil beam proton therapy with a fixed beamline in the upright position. Background: Esthesioneuroblastoma (ENB) is an extremely rare tumor of sinonasal area located in critical proximity to vital structures. Proton therapy (PT) is often considered the optimal radiation treatment for head-and-neck tumors, although of limited availability. Upright PT delivered using fixed pencil beamline and rotating chair is a fairly promising option. Methods: This is a single-center experience describing the outcomes of PT in 14 patients with ENB treated between January 2016 and October 2022; half of the cases had a history of previous irradiation. The therapy was applied using a fixed pencil beamline with 6D-chair for positioning. The median dose was 63 GyRBE (total range 48-70 GyRBE; based on 1.1 RBE multiplier for protons) with 2.0 GyRBE per fraction. The mean gross tumor volume was 109.5 cm3 (17.1-257.7 cm3). Patient demography, pathology, treatment parameters and toxicity data were analyzed. Radiation-induced reactions were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) v 4.0. Results: The median follow-up time was 28 months. The 1- and 2-year locoregional control rates constituted 100% and 88.9%, respectively; the median duration of local control was 52 months. The 1- and 2-year progression-free survival (PFS) rates constituted 92.9% and 75.0%, respectively; the median PFS duration was 52 months. The 1- and 2-year overall survival (OS) rates constituted 92.9% and 84.4%, respectively. Two patients died of non-cancer-related causes (coronavirus-induced pneumonia) and 1 patient died of tumor progression. All patients tolerated PT well without any treatment gaps. Serious late toxicity reactions included glaucoma in 1 patient and cataract in 2 patients, in over half a year since irradiation. Conclusion: PT with upright design of the unit affords promising outcomes in terms of disease control and toxicity rates in ENB, a sinonasal tumor of complicated localization.

8.
J Biomed Mater Res A ; 112(2): 144-154, 2024 02.
Article En | MEDLINE | ID: mdl-37921091

Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.


Nanofibers , Tissue Scaffolds , Gelatin/pharmacology , Tissue Engineering/methods , Collagen/pharmacology
9.
Placenta ; 145: 151-161, 2024 Jan.
Article En | MEDLINE | ID: mdl-38141416

INTRODUCTION: The role of the TGFß signaling pathway, an important cascade responsible for the anti-inflammatory polarization of macrophages, in the development of both early- and late-onset preeclampsia (eoPE and loPE), remains poorly understood. In this study, we examined the components of the TGFß signaling cascade and macrophage markers within placental tissue in normal pregnancy and in PE. METHODS: Patients with eoPE, loPE, and normal pregnancy were enrolled in the study (n = 10 in each group). Following techniques were used for the investigation: immunohistochemistry analysis, western blotting, qRT-PCR, isolation of monocytes by magnetic sorting, transfection, microRNA sequencing, and bioinformatic analysis. RESULTS: We observed a significant decrease in the anti-inflammatory macrophage marker CD206 in the loPE group, alongside with a significant down-regulation of CD206 protein production in both eoPE and loPE groups. The level of CD68-positive cells and relative levels of CD163 and MARCO production were comparable across the groups. However, we identified a significant decrease in the TGFß receptor 2 production and its gene expression in the PE group. Further analysis revealed a link between TGFBR2 and MRC1 (CD206) genes through a single miRNA, hsa-miR-27a-3p. Transfecting CD14-derived macrophages with the hsa-miR-27a-3p mimic significantly changed TGFBR2 production, indicating the potential role of this miRNA in regulating the TGFß signaling pathway. We also revealed the up-regulation of hsa-miR-27a-5p and hsa-miR-27a-3p in the trophoblast BeWo b30 cell line under the severe hypoxia condition and the fact that TGFBR2 3' UTR could serve as a potential target for these miRNAs. DISCUSSION: Our findings uncover a novel potential therapeutic target for managing patients with PE, significantly contributing to a deeper comprehension of the underlying mechanisms involved in the development of this pathology.


Eosine Yellowish-(YS) , MicroRNAs , Phosphatidylethanolamines , Placenta , Female , Humans , Pregnancy , Anti-Inflammatory Agents , Eosine Yellowish-(YS)/analogs & derivatives , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Placenta/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Transforming Growth Factor beta/genetics
10.
Cancers (Basel) ; 15(24)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38136307

Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.

11.
Biomolecules ; 13(12)2023 12 13.
Article En | MEDLINE | ID: mdl-38136654

Cell therapy represents a promising approach to the treatment of neurological diseases, offering potential benefits not only by cell replacement but also through paracrine secretory activities. However, this approach includes a number of limiting factors, primarily related to safety. The use of conditioned stem cell media can serve as an equivalent to cell therapy while avoiding its disadvantages. The present study was a comparative investigation of the antioxidant, neuroprotective and neurotrophic effects of conditioned media obtained from neuronal and glial progenitor cells (NPC-CM and GPC-CM) on the PC12 cell line in vitro. Neuronal and glial progenitor cells were obtained from iPSCs by directed differentiation using small molecules. GPC-CM reduced apoptosis, ROS levels and increased viability, expressions of the antioxidant response genes HMOX1 and NFE2L2 in a model of glutamate-induced oxidative stress. The neurotrophic effect was evidenced by a change in the morphology of pheochromocytoma cells to a neuron-like phenotype. Moreover, neurite outgrowth, expression of GAP43, TUBB3, MAP2, SYN1 genes and increased levels of the corresponding MAP2 and TUBB3 proteins. Treatment with NPC-CM showed moderate antiapoptotic effects and improved cell viability. This study demonstrated the potential application of CM in the field of regenerative medicine.


Antioxidants , Glutamic Acid , Rats , Animals , Culture Media, Conditioned/pharmacology , Glutamic Acid/toxicity , Glutamic Acid/metabolism , Antioxidants/pharmacology , Neurons/metabolism , Stem Cells , PC12 Cells
12.
J Pers Med ; 13(11)2023 Nov 03.
Article En | MEDLINE | ID: mdl-38003890

For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.

13.
J Pers Med ; 13(11)2023 Nov 17.
Article En | MEDLINE | ID: mdl-38003931

Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.

14.
Sci Rep ; 13(1): 20388, 2023 11 21.
Article En | MEDLINE | ID: mdl-37989873

Stem cell-based therapeutic approaches for neurological disorders are widely studied. Paracrine factors secreted by stem cells in vitro and delivered intranasally might allow bypassing the disadvantages associated with a surgical cell delivery procedure with likely immune rejection of a transplant. In this study, we investigated the therapeutic effect of the extracellular vesicles secreted by glial progenitor cells (GPC-EV) derived from human induced pluripotent stem cell in a traumatic brain injury model. Intranasal administration of GPC-EV to Wistar rats for 6 days improved sensorimotor functions assessed over a 14-day observation period. Beside, deep sequencing of microRNA transcriptome of GPC-EV was estimate, and was revealed 203 microRNA species that might be implicated in prevention of various brain pathologies. Modulation of microRNA pools might contribute to the observed decrease in the number of astrocytes that inhibit neurorecovery processes while enhancing neuroplasticity by decreasing phosphorylated Tau forms, preventing inflammation and apoptosis associated with secondary damage to brain tissue. The course of GPC-EV administration was promoted the increasing protein levels of NF-κB in studied areas of the rat brain, indicating NF-κB dependent mechanisms as a plausible route of neuroprotection within the damaged area. This investigation showed that GPC-EV may be representing a therapeutic approach in traumatic brain injury, though its translation into the clinic would require an additional research and development.


Brain Injuries, Traumatic , Extracellular Vesicles , Induced Pluripotent Stem Cells , MicroRNAs , Neuroprotective Agents , Humans , Rats , Animals , MicroRNAs/metabolism , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , Rats, Wistar , Induced Pluripotent Stem Cells/metabolism , Brain/metabolism , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/drug therapy , Extracellular Vesicles/metabolism , Neuroglia/metabolism
15.
PeerJ ; 11: e16052, 2023.
Article En | MEDLINE | ID: mdl-37842051

Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.


Lipopolysaccharides , Macrophages , Rats , Animals , Lipopolysaccharides/pharmacology , Hypoxia/genetics , Monocytes , Disease Susceptibility/metabolism , Systemic Inflammatory Response Syndrome/metabolism
16.
Cancers (Basel) ; 15(17)2023 Sep 04.
Article En | MEDLINE | ID: mdl-37686685

The recurrence rate of head and neck cancers (HNCs) after initial treatment may reach 70%, and poor prognosis is reported in most cases. Curative options for recurrent HNCs mainly depend on the treatment history and the recurrent tumor localization. Reirradiation for HNCs is effective and has been included in most guidelines. However, the option remains clinically challenging due to high incidence of severe toxicity, especially in cases of quick infield recurrence. Recent technical advances in radiation therapy (RT) provide the means for upgrade in reirradiation protocols. While the majority of hospitals stay focused on conventional and widely accessible modulated RTs, the particle therapy options emerge as tolerable and providing further treatment opportunities for recurrent HNCs. Still, the progress is impeded by high heterogeneity of the data and the lack of large-scale prospective studies. This review aimed to summarize the outcomes of reirradiation for HNCs in the clinical perspective.

17.
Front Cell Dev Biol ; 11: 1241819, 2023.
Article En | MEDLINE | ID: mdl-37745290

Introduction: The role of the immune system in liver repair is fundamentally complex and most likely involves the spleen. The close connection between the two organs via the portal vein enables delivery of splenic cytokines and living cells to the liver. This study evaluates expression of inflammation-related genes and assesses the dynamics of monocyte-macrophage and lymphocyte populations of the spleen during the recovery from 70% hepatectomy in mice. Methods: The study used the established mouse model of 70% liver volume resection. The animals were sacrificed 24 h, 72 h or 7 days post-intervention and splenic tissues were collected for analysis: Clariom™ S transcriptomic assay, immunohistochemistry for proliferation marker Ki-67 and macrophage markers, and flow cytometry for lymphocyte and macrophage markers. Results: The loss and regeneration of 70% liver volume affected the cytological architecture and gene expression profiles of the spleen. The tests revealed significant reduction in cell counts for Ki-67+ cells and CD115+ macrophages on day 1, Ly6C + cells on days 1, 3 and 7, and CD3+CD8+ cytotoxic lymphocytes on day 7. The transcriptomic analysis revealed significant activation of protease inhibitor genes Serpina3n, Stfa2 and Stfa2l1 and decreased expression of cell cycle regulatory genes on day 1, mirrored by inverse dynamics observed on day 7. Discussion and conclusion: Splenic homeostasis is significantly affected by massive loss in liver volume. High levels of protease inhibitors indicated by increased expression of corresponding genes on day 1 may play an anti-inflammatory role upon reaching the regenerating liver via the portal vein. Leukocyte populations of the spleen react by a slow-down in proliferation. A transient decrease in the local CD115+ and Ly6C+ cell counts may indicate migration of splenic monocytes-macrophages to the liver.

18.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article En | MEDLINE | ID: mdl-37569717

Traumatic brain injuries account for 30-50% of all physical traumas and are the most common pathological diseases of the brain. Mechanical damage of brain tissue leads to the disruption of the blood-brain barrier and the massive death of neuronal, glial, and endothelial cells. These events trigger a neuroinflammatory response and neurodegenerative processes locally and in distant parts of the brain and promote cognitive impairment. Effective instruments to restore neural tissue in traumatic brain injury are lacking. Glial cells are the main auxiliary cells of the nervous system, supporting homeostasis and ensuring the protection of neurons through contact and paracrine mechanisms. The glial cells' secretome may be considered as a means to support the regeneration of nervous tissue. Consequently, this study focused on the therapeutic efficiency of composite proteins with a molecular weight of 5-100 kDa secreted by glial progenitor cells in a rat model of traumatic brain injury. The characterization of proteins below 100 kDa secreted by glial progenitor cells was evaluated by proteomic analysis. Therapeutic effects were assessed by neurological outcomes, measurement of the damage volume by MRI, and an evaluation of the neurodegenerative, apoptotic, and inflammation markers in different areas of the brain. Intranasal infusions of the composite protein product facilitated the functional recovery of the experimental animals by decreasing the inflammation and apoptotic processes, preventing neurodegenerative processes by reducing the amounts of phosphorylated Tau isoforms Ser396 and Thr205. Consistently, our findings support the further consideration of glial secretomes for clinical use in TBI, notably in such aspects as dose-dependent effects and standardization.


Brain Injuries, Traumatic , Endothelial Cells , Rats , Animals , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Proteomics , Brain Injuries, Traumatic/metabolism , Neuroglia/metabolism , Inflammation , Stem Cells/metabolism
19.
Int Immunopharmacol ; 122: 110583, 2023 Sep.
Article En | MEDLINE | ID: mdl-37423155

Macrophages as innate immune cells with great plasticity are of great interest for cell therapy. There are two main macrophage populations - pro- and anti-inflammatory cells also known as M1 and M2. High potential in cancer research contributed to the in-depth study of the molecular processes leading to the polarization of macrophages into the M1 phenotype, and much less attention has been paid to anti-inflammatory M2 macrophages, which can be successfully used in cell therapy of inflammatory diseases. This review describes ontogenesis of macrophages, main functions of pro- and and-inflammatory cells and four M2 subpopulations characterized by different functionalities. Data on agents (cytokines, microRNAs, drugs, plant extracts) that may induce M2 polarization through the changes in microenvironment, metabolism, and efferocytosis are summarized. Finally, recent attempts at stable macrophage polarization using genetic modifications are described. This review may be helpful for researchers concerned with the problem of M2 macrophage polarization and potential use of these anti-inflammatory cells for the purposes of regenerative medicine.


Macrophages , MicroRNAs , Cytokines/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , Anti-Inflammatory Agents/therapeutic use
20.
Int J Mol Sci ; 24(11)2023 May 29.
Article En | MEDLINE | ID: mdl-37298382

Disruption of endometrial regeneration, fibrosis formation, and intrauterine adhesions underlie the development of "thin" endometrium and/or Asherman's syndrome (AS) and are a common cause of infertility and a high risk for adverse obstetric outcomes. The methods used (surgical adhesiolysis, anti-adhesive agents, and hormonal therapy) do not allow restoration of the regenerative properties of the endometrium. The experience gained today with cell therapy using multipotent mesenchymal stromal cells (MMSCs) proves their high regenerative and proliferative properties in tissue damage. Their contribution to regenerative processes is still poorly understood. One of these mechanisms is based on the paracrine effects of MMSCs associated with the stimulation of cells of the microenvironment by secreting extracellular vesicles (EVs) into the extracellular space. EVs, whose source is MMSCs, are able to stimulate progenitor cells and stem cells in damaged tissues and exert cytoprotective, antiapoptotic, and angiogenic effects. This review described the regulatory mechanisms of endometrial regeneration, pathological conditions associated with a decrease in endometrial regeneration, and it presented the available data from studies on the effect of MMSCs and their EVs on endometrial repair processes, and the involvement of EVs in human reproductive processes at the level of implantation and embryogenesis.


Extracellular Vesicles , Mesenchymal Stem Cells , Uterine Diseases , Female , Humans , Endometrium/pathology , Mesenchymal Stem Cells/pathology , Uterine Diseases/pathology , Stem Cells/pathology , Extracellular Vesicles/pathology
...