Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 639: 122946, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37044230

RESUMEN

Dexamethasone is a well-known anti-inflammatory drug readily used to treat many lung diseases. However, its side effects and poor lower airway deposition and retention are significant limitations to its usage. In this work, we developed lipid nanoparticulate platforms loaded with dexamethasone and evaluated their behavior in inflammatory lung models in vitro and in vivo. Dexamethasone-loaded liposomes with an average diameter below 150 nm were obtained using a solvent injection method. Three different formulations were produced with a distinct surface coating (polyethylene glycol, hyaluronic acid, or a mixture of both) as innovative strategies to cross the pulmonary mucus layer and/or target CD44 expressed on alveolar proinflammatory macrophages. Interestingly, while electron paramagnetic spectroscopy showed that surface modifications did not induce any molecular changes in the liposomal membrane, drug loading analysis revealed that adding the hyaluronic acid in the bilayer led to a decrease of dexamethasone loading (from 3.0 to 1.7 w/w%). In vitro experiments on LPS-activated macrophages demonstrated that the encapsulation of dexamethasone in liposomes, particularly in HA-bearing ones, improved its anti-inflammatory efficacy compared to the free drug. Subsequently, in vivo data revealed that while intratracheal administration of free dexamethasone led to an important inter-animals variation of efficacy, dexamethasone-loaded liposomes showed an improved consistency within the results. Our data indicate that encapsulating dexamethasone into lipid nanoparticles is a potent strategy to improve its efficacy after lung delivery.


Asunto(s)
Ácido Hialurónico , Liposomas , Animales , Liposomas/química , Ácido Hialurónico/química , Antiinflamatorios , Macrófagos , Dexametasona
2.
J Control Release ; 352: 15-24, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209941

RESUMEN

Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells. Unfortunately, this coating strategy may be countered by the presence on the surface of the nanoparticles of a poly(ethylene glycol) corona employed to improve nanoparticles' diffusion in the lung mucus. This study aims to measure this phenomenon by comparing the behavior in a murine lung inflammation model of three liposomal platforms designed to represent different poly(ethylene glycol) and hyaluronic acid densities (Liposome-PEG, Liposome-PEG-HA and Liposome-HA). In this work, the liposomes were obtained by a one-step ethanol injection method. Their interaction with mucin and targeting ability toward pro-inflammatory macrophages were then investigated in vitro and in vivo in a LPS model of lung inflammation. In vitro, poly(ethylene glycol) free HA-liposomes display a superior targeting efficiency toward M1 macrophages, while the addition of poly(ethylene glycol) induces better mucus mobility. Interestingly in vivo studies revealed that the three liposomes showed distinct cell specificity with alveolar macrophages demonstrating an avidity for poly(ethylene glycol) free HA-liposomes, while neutrophils favored PEGylated liposomes exempt of HA. Those results could be explained by the presence of two forces exercising a balance between mucus penetration and receptor targeting. This study corroborates the importance of considering the site of action and the targeted cells when designing nanoparticles to treat lung diseases.


Asunto(s)
Ácido Hialurónico , Liposomas , Ratones , Animales , Macrófagos Alveolares , Polietilenglicoles , Moco
3.
Int J Pharm ; 514(1): 103-111, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27863652

RESUMEN

We have investigated the impact of hyaluronic acid (HA)-coating on the targeting capacity of siRNA lipoplexes to CD44-overexpressing tumor cells. Cellular uptake and localization of HA-lipoplexes were evaluated by flow cytometry and fluorescence microscopy and both methods showed that these lipoplexes were rapidly internalized and localized primarily within the cytoplasm. Inhibition of luciferase expression on the A549-luciferase lung cancer cell line was achieved in vitro using an anti-Luc siRNA. 81% of luciferase gene expression inhibition was obtained in vitro with HA-lipoplexes at +/- ratio 2. In vivo, in a murine A549 metastatic lung cancer model, the treatment with HA-lipoplexes carrying anti-luciferase siRNA led to a statistically significant decrease of luciferase expression as opposed to progressive increase with non-modified lipoplexes or NaCl 0.9%. The reduction of the expression of luciferase mRNA tumor of mice treated with HA-lipoplexes supported the inhibition effect due to siRNA. These results highlight the potential of HA-lipoplexes in CD44-targeting siRNA delivery.


Asunto(s)
Ácido Hialurónico/química , Liposomas/química , Neoplasias Pulmonares/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Luciferasas/metabolismo , Ratones , ARN Mensajero/metabolismo
4.
Int J Nanomedicine ; 8: 2065-76, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23737670

RESUMEN

In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1ß, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis.


Asunto(s)
Química Farmacéutica/métodos , Desecación/métodos , Portadores de Fármacos/química , Metilprednisolona/química , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Supervivencia Celular/efectos de los fármacos , Sulfatos de Condroitina/química , Portadores de Fármacos/toxicidad , Humanos , Ácido Hialurónico/química , Interleucina-1beta/análisis , Metilprednisolona/farmacocinética , Tamaño de la Partícula , Difracción de Rayos X
5.
Drug Dev Ind Pharm ; 39(2): 310-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23323873

RESUMEN

Due to their crystalline nature, the encapsulation of hydrophobic corticosteroids within polymeric nanoparticles by o/w solvent evaporation method is often difficult to achieve. The aim of this study was to evaluate the effect of both process and formulation parameters on the encapsulation of a model corticosteroid: methylprednisolone (MP). For this purpose, a 3(2)factorial design was performed evaluating the effects of the concentration of emulsifiers and sonication time on the manufactured nanoparticles, followed by a multiresponse optimization. The study also included the evaluation of other parameters such as the type of organic solvent used, polymer characteristics and the initial mass of drug. The optimal nanoparticle formulation using 0.25% (w/v) of emulsifying agent (Polyvinyl-alcohol, PVA) and 5 min of sonication was then characterized. The highest encapsulation was obtained with an organic phase consisting of acetone: dichloromethane (1:1), polyD,L-lactide-co-glycolide (PLGA) 50:50 as polymer and an initial mass of 6.6 mg of methylprednisolone. Nanoparticles size and ζ potential of optimized formulation were respectively around 230 nm and -14 mV. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles. Release study showed that MP-loaded nanoparticles sustained drug release for up to 120 h. This study reflects the importance of factorial design to optimize the manufacture of nanoparticles encapsulating hydrophobic drugs.


Asunto(s)
Antiinflamatorios/química , Metilprednisolona/química , Nanopartículas/química , Biodegradación Ambiental , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Polímeros/química
6.
J Control Release ; 152(3): 370-5, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21396412

RESUMEN

Spray-dried powders for lung delivery of sodium alendronate (SA) were prepared from hydroalcoholic solutions. Formulations display geometric particle size below to 12 µm and spherical shape associated to a hollow structure. The addition of leucine and ammonium bicarbonate leads to porous particles with rough surfaces. The tapped density ranges from 0.016 to 0.062 g/cm(3), decreasing with the increase of the leucine concentration. For all formulations, the calculated aerodynamic diameters are lower than 5 µm. The in vitro aerodynamic evaluation shows that all powders present a high emitted fraction of 100%, a fine particle fraction ranging from 34.4% to 62.0% and an alveolar fraction ranging from to 23.7% to 42.6%. An optimized sample was evaluated regarding sodium alendronate acute pulmonary toxicity and lung bioavailability. The bronchoalveolar lavage study shows that the intratracheal administration of sodium alendronate dry powder and sodium alendronate aqueous solution do not induce significant increases of lung toxicity indicators as compared with the positive control. Moreover, the intratracheal administration of sodium alendronate dry powder results in a 6.23 ± 0.83% bioavailability, a 3.5-fold increase as compared to oral bioavailability. Finally, these results suggest that sodium alendronate pulmonary delivery could be a new and promising administration route.


Asunto(s)
Alendronato/administración & dosificación , Alendronato/farmacocinética , Pulmón/metabolismo , Administración por Inhalación , Aerosoles/química , Alendronato/toxicidad , Alendronato/orina , Animales , Bicarbonatos/química , Disponibilidad Biológica , Líquido del Lavado Bronquioalveolar/química , Química Farmacéutica/métodos , Perros , Etanol/química , Instilación de Medicamentos , Insuflación , L-Lactato Deshidrogenasa/metabolismo , Leucina/química , Pulmón/efectos de los fármacos , Masculino , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Excipientes Farmacéuticos/química , Polvos , Proteínas/análisis , Ratas , Ratas Wistar , Gravedad Específica , Propiedades de Superficie
7.
Int J Pharm ; 352(1-2): 280-6, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18078725

RESUMEN

This paper describes the influence of cationic lipid composition on physico-chemical properties of complexes formed between oligonucleotides (ON) and cationic emulsions. Formulations containing medium chain triglycerides, egg lecithin, increasing amounts of either oleylamine (OA) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and water were prepared by a spontaneous emulsification procedure. ON adsorption on emulsions was evidenced by the inversion of the zeta-potential, the increase in droplet size, and the morphology of the oil droplet examined through transmission electron microscopy. Adsorption isotherms showed a higher amount of ON adsorbed on emulsions containing DOTAP when compared to emulsions containing OA. In a final step, the role of the main parameters, which may in fact influence the ON release rate from emulsions, was investigated. ON were progressively released from emulsions with an increase in dilution ratio and remained quite similar for both OA and DOTAP emulsions over time. Conversely, the effect of the cationic lipid composition was observed upon increasing the charge ratio of complexes. ON release at a same charge ratio was lower from emulsions containing DOTAP (bearing dioleyl chains) than from those containing OA (bearing monoleyl chain).


Asunto(s)
Emulsiones , Técnicas de Transferencia de Gen , Lípidos/química , Oligonucleótidos/química , Adsorción , Aminas/química , Cationes , Ácidos Grasos Monoinsaturados/química , Lecitinas/química , Estructura Molecular , Tamaño de la Partícula , Compuestos de Amonio Cuaternario/química , Solubilidad , Electricidad Estática , Factores de Tiempo , Triglicéridos/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA