Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 67(18)2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36093921

RESUMEN

Objective.To establish an open framework for developing plan optimization models for knowledge-based planning (KBP).Approach.Our framework includes radiotherapy treatment data (i.e. reference plans) for 100 patients with head-and-neck cancer who were treated with intensity-modulated radiotherapy. That data also includes high-quality dose predictions from 19 KBP models that were developed by different research groups using out-of-sample data during the OpenKBP Grand Challenge. The dose predictions were input to four fluence-based dose mimicking models to form 76 unique KBP pipelines that generated 7600 plans (76 pipelines × 100 patients). The predictions and KBP-generated plans were compared to the reference plans via: the dose score, which is the average mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH) points; and the frequency of clinical planning criteria satisfaction. We also performed a theoretical investigation to justify our dose mimicking models.Main results.The range in rank order correlation of the dose score between predictions and their KBP pipelines was 0.50-0.62, which indicates that the quality of the predictions was generally positively correlated with the quality of the plans. Additionally, compared to the input predictions, the KBP-generated plans performed significantly better (P< 0.05; one-sided Wilcoxon test) on 18 of 23 DVH points. Similarly, each optimization model generated plans that satisfied a higher percentage of criteria than the reference plans, which satisfied 3.5% more criteria than the set of all dose predictions. Lastly, our theoretical investigation demonstrated that the dose mimicking models generated plans that are also optimal for an inverse planning model.Significance.This was the largest international effort to date for evaluating the combination of KBP prediction and optimization models. We found that the best performing models significantly outperformed the reference dose and dose predictions. In the interest of reproducibility, our data and code is freely available.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Bases del Conocimiento , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Reproducibilidad de los Resultados
2.
Med Phys ; 48(9): 5562-5566, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34156727

RESUMEN

PURPOSE: To present the technical details of the runner-up model in the open knowledge-based planning (OpenKBP) challenge for the dose-volume histogram (DVH) stream. The model was designed to ensure simple and reproducible training, without the necessity of costly advanced generative adversarial network (GAN) techniques. METHODS: The model was developed based on the OpenKBP challenge dataset, consisting of 200 and 40 head-and-neck patients for training and validation, respectively. The final model is a U-Net with additional ResNet blocks between up- and down convolutions. The results were obtained by training the model with AdamW with the One Cycle scheduler. The loss function is a combination of the L1 loss with a feature loss, which uses a pretrained video classifier as a feature extractor. The performance was evaluated on another 100 patients in the OpenKBP test dataset. The DVH metrics of the test data were evaluated, where D 0.1 c c , and D mean were calculated for the organs at risk (OARs) and D 1 % , D 95 % , and D 99 % were computed for the target structures. DVH metric differences between predicted and true dose are reported in percentage. RESULTS: The model achieved 2nd and 4th place in the DVH and dose stream of the OpenKBP challenge, respectively. The dose and DVH score were 2.62 ± 1.10 and 1.52 ± 1.06, respectively. Mean dose differences for the different structures and DVH parameters were within ±1%. CONCLUSION: This straightforward approach produced excellent results. It incorporated One Cycle Learning, ResNet, and feature-based losses, which are common computer vision techniques.


Asunto(s)
Aprendizaje Profundo , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...