Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-515932

RESUMEN

Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2 site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants. One sentence summaryBroadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22282537

RESUMEN

Immunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines. Here we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (ID, n=25) diseases. We show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to both virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus. Hence, additional booster doses are recommended to frail patients.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-513090

RESUMEN

Currently approved COVID-19 vaccines prevent symptomatic infection, hospitalization, and death of the disease. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raises concerns of reduced vaccine effectiveness and increased risk of infection. Repeated homologous booster in elderly individuals and immunocompromised patients is considered to solve severe form of disease caused by new SARS-CoV-2 variants but cannot protect completely against breakthrough infection. In our previous study we assessed the immunogenicity of an adenovirus-based vaccine expressing SARS-CoV-2-S1 (Ad5.S1) in mice, resulting in that a single immunization with Ad5.S1, via subcutaneously injection or intranasal delivery, induced robust humoral and cellular immune responses [1]. As a follow up study, here we showed that vaccinated mice had high titers of anti-S1 antibodies at one year after vaccination compared to PBS immunized mice. Furthermore, one booster dose of non-adjuvanted recombinant S1Beta (rS1Beta) subunit vaccine was effective in stimulating strong long-lived S1-specific immune responses and inducing significantly high neutralizing antibodies against the Wuhan, Beta, and Delta strain with 3.6- to 19.5-fold change increases. Importantly, the booster dose elicits cross-reactive antibody responses resulting in ACE2 binding inhibition against spike of SARS-CoV-2 variants (Wuhan, Alpha, Beta, Gamma, Delta, Zeta, Kappa, New York, India) as early as two-week post-boost injection, persisting over 28 weeks after a booster vaccination. Interestingly, levels of neutralizing antibodies were correlated with not only level of S1-binding IgG but also level of ACE2 inhibition in the before- and after-booster serum samples. Our findings show that S1 recombinant protein subunit vaccine candidate as a booster has potential to offer cross-neutralization against broad variants, and has important implications for vaccine control of new emerging breakthrough SARS-CoV-2 variants in elderly individuals primed with adenovirus-based vaccine like AZD1222 and Ad26.COV2.S.

4.
Biomedicines ; 10(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36009540

RESUMEN

The use of micronutrients such as vitamin D could improve the response to viral vaccines, particularly in immunosuppressed and immunosenescent subjects. Here, we analysed the association between serum 25-hydroxyvitamin D (25OHD) levels and the immune response elicited by the BNT162b2 vaccine in a cohort of 101 healthcare workers naïve for SARS-CoV-2 infection. We observed no significant differences in anti-spike (S) IgG and T-cell responses according to the 25OHD status at baseline. However, significant correlations between the 25OHD concentration at baseline and (i) the anti-S response (p < 0.020) and (ii) the neutralizing antibody (NT) titre (p = 0.040) at six months after the second dose were detected. We concluded that adequate levels of vitamin D may improve the immune response to mRNA vaccines such as BNT162b2, and that further larger studies are warranted in order to confirm these preliminary observations.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-491179

RESUMEN

Additional COVID-19 vaccines that are safe, easy to manufacture, and immunogenic are needed for global vaccine equity. Here, we developed a recombinant type 5 adenovirus vector encoding for the SARS-CoV-2-S1 subunit antigen and nucleocapsid as a fusion protein (Ad5.SARS-CoV-2-S1N) delivered to BALB/c mice through multiple vaccine administration routes. A single subcutaneous (S.C.) immunization with Ad5.SARS-CoV-2-S1N induced a similar humoral response, along with a significantly higher S1-specific cellular response, as a recombinant type 5 adenovirus vector encoding for S1 alone (Ad5.SARS-CoV-2-S1). Immunogenicity was improved by homologous prime boost strategies, using either S.C. or intranasal (I.N.) delivery of Ad5.SARS-CoV-2-S1N, and further improved through heterologous prime boost, with traditional intramuscular (I.M.) injection, using subunit recombinant S1 protein. Priming with low dose (1x1010 v.p.) of Ad5.SARS-CoV-2-S1N and boosting with either wildtype recombinant rS1 or B.1.351 recombinant rS1 induced a robust neutralizing response, that was sustained against immune evasive Beta and Gamma SARS-CoV-2 variants, along with a long-lived plasma cell response in the bone marrow 29 weeks post vaccination. This novel Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity in mice and supports the further development of COVID-19 based vaccines incorporating the nucleoprotein as a target antigen.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22269351

RESUMEN

BackgroundFrail patients are considered at relevant risk of complications due to COVID-19 infection and, for this reason, are prioritized candidates for vaccination. As these patients were originally not included in the registration trials, fear related to vaccine side-effects and disease worsening was one of the reasons for vaccine hesitancy. Herein we report the safety profile of the prospective, multicenter, national VAX4FRAIL study (NCT04848493) to evaluate vaccines in a large trans-disease cohort of patients with solid or hematological malignancies, neurological and rheumatological diseases. MethodsBetween March 3rd and September 2nd, 2021, 566 patients were evaluable for safety endpoint: 105 received the mRNA-1273 vaccine and 461 the BNT162b2 vaccine. Frail patients were defined per protocol as patients under treatment with hematological malignancies (131), solid tumors (191), immune-rheumatological diseases (86), and neurological diseases (158), including multiple sclerosis and generalized myasthenia. The impact of the vaccination on the health status of patients was assessed through a questionnaire focused on the first week after each vaccine dose. ResultsThe most frequently reported moderate-severe adverse events were pain at the injection site (60.3% after the first dose, 55.4% after the second), fatigue (30.1% - 41.7%), bone pain (27.4% - 27.2%) and headache (11.8% - 18.9%). Risk factors associated with the occurrence of severe symptoms after vaccine administration were identified through a multivariate logistic regression analysis: age was associated with severe fever presentation (younger patients vs. middle-aged vs. older ones), females presented a higher probability of severe pain at the injection site, fatigue, headache, and bone pain; the mRNA-1237 vaccine was associated with a higher probability of severe pain at the injection site and fever. After the first dose, patients presenting a severe symptom were at a relevant risk of recurrence of the same severe symptom after the second one. Overall, 11 patients (1.9%) after the first dose and 7 (1.2%) after the second one required to postpone or suspend the disease-specific treatment. Finally, 2 fatal events occurred among our 566 patients. These two events were considered unrelated to the vaccine. ConclusionsOur study reports that mRNA-COVID-19 vaccination is safe also in frail patients as expected side effects were manageable and had a minimum impact on patient care path. ImportanceOur study reports the safety analysis of the trial VAX4FRAIL confirming that mRNA-COVID-19 vaccination is safe in frail immunocompromised patients: expected side effects were manageable and had a minimum impact on patient care path. ObjectiveTo evaluate the safety of mRNA-COVID-19 vaccination in vulnerable patients. DesignVAX4FRAIL is a national, multicentric, observational, prospective trial (start date March 3rd, 2021 - primary completion date September 2nd, 2021). SettingMulticenter prospective trial. ParticipantsFrail patients were defined per protocol as patients under treatment with solid tumors (191), immune-rheumatological diseases (86), hematological malignancies (131), and neurological diseases (158), including multiple sclerosis and generalized myasthenia. ExposureOverall, 105 received the mRNA-1273 vaccine and 461 the BNT162b2 vaccine. Main OutcomeThe occurrence of adverse events after 1st and 2nd m-RNA-COVID-19 vaccination was analyzed. Adverse events were collected through a questionnaire comprising both open and closed questions. ResultsThe most frequently reported moderate-severe adverse events were pain at the injection site (60.3% after the first dose, 55.4% after the second), fatigue (30.1% - 41.7%), bone pain (27.4% - 27.2%) and headache (11.8% - 18.9%). Risk factors associated with the occurrence of severe symptoms after vaccine administration were identified through a multivariate logistic regression analysis: age was associated with severe fever presentation (younger patients vs. middle-aged vs. older ones), females presented a higher probability of severe pain at the injection site, fatigue, headache, and bone pain; the mRNA-1237 vaccine was associated with a higher probability of severe pain at the injection site and fever. Patients presenting a severe symptom after the first dose were at a relevant risk of recurrence of the same severe symptom after the second one. Overall, 11 patients (1.9%) after the first dose and 7 (1.2%) after the second one was required to postpone or suspend their disease-specific treatment. Finally, 2 fatal events occurred among our 566 patients, and these two events were due to disease progression and considered unrelated to the vaccine. Conclusion and RelevanceOur study reports that mRNA-COVID-19 vaccination is safe also in frail patients as expected side effects were manageable and had a minimum impact on patient care path. Study RegistrationA National, Multicentric, Observational, Prospective Study to Assess Immune Response to COVID-19 Vaccine in Frail Patients (VAX4FRAIL). NCT04848493 https://clinicaltrials.gov/ct2/show/NCT04848493 Key PointsO_ST_ABSQuestionC_ST_ABSCan m-RNA-COVID19 vaccination be considered safe for frail patients? FindingsIn this national, multicentric, observational, prospective trial (NCT04848493) that included 566 frail patients, the occurrence of both local and systemic adverse events was manageable and did not negatively impact on the general treatment program. MeaningmRNA-COVID19 vaccination is safe among frail immunocompromised patients.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22269133

RESUMEN

BackgroundPatients with solid or hematological tumors, neurological and immune-inflammatory disorders represent potentially fragile subjects with increased risk to experience severe COVID-19 and inadequate response to SARS-CoV2 vaccination. MethodsWe designed a prospective Italian multicentric study to assess humoral and T-cell response to SARS-CoV2 vaccination in patients (n=378) with solid tumors (ST), hematological malignancies (HM), neurological (ND) and immuno-rheumatological diseases (ID). The immunogenicity of primary vaccination schedule and of the booster dose were analyzed. ResultsOverall, patient seroconversion rate after two doses was 62.1%. A significant lower rate was observed in HM (52.4%) and ID (51.9%) patients compared to ST (95.6%) and ND (70.7%); a lower median level of antibodies was detected in HM and ID versus the others (p<0.0001). A similar rate of patients with a positive SARS-CoV2 T-cell response was observed in all disease groups, with a higher level observed in the ND group. The booster dose improved humoral responses in all disease groups, although with a lower response in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, the independent predictors for seroconversion were disease subgroups, type of therapies and age. Notably, the ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (p<0.0001), but had no effects on the T-cell responses. ConclusionsImmunosuppressive treatment more than disease type per se is a risk factor for low humoral response after vaccination. The booster dose can improve both humoral and T-cell response. Articles main point- Lower rate of seroconversion was observed in fragile patients as compared to healthy controls - The booster dose improves humoral and T-cell response in all fragile patient groups - Immunosuppressive treatment was associated with the worst humoral response to vaccination, but had no effects on T-cell responses.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22268755

RESUMEN

BackgroundThere has been an unprecedented global effort to produce safe and effective vaccines against SARS-CoV-2. However, production challenges, supply shortages and unequal global reach, together with an increased number of breakthrough infections due to waning of immunity and the emergence of new variants of concern (VOC), have prolonged the pandemic. To boost the immune response, several heterologous vaccination regimes have been tested and have shown increased antibody responses compared to homologous vaccination. Here we evaluated the effect of mRNA vaccine booster on immunogenicity in individuals who had been vaccinated with two doses of inactivated vaccines. MethodsThe levels of specific antibodies against the receptor-binding domain (RBD) of the spike protein from wild-type virus and the Beta, Delta and Omicron variants were measured in healthy individuals who had received two doses of homologous inactivated (BBIBP-CorV or CoronoVac) or mRNA (BNT162b2 or mRNA-1273) vaccines, and in donors who were given an mRNA vaccine boost after two doses of either vaccine. Pre-vaccinated healthy donors, or individuals who had been infected and subsequently received the mRNA vaccine were also included as controls. In addition, specific memory B and T cell responses were measured in a subset of samples. ResultsA booster dose of an mRNA vaccine significantly increased the level of specific antibodies that bind to the RBD domain of the wild-type (6-fold) and VOCs including Delta (8-fold) and Omicron (14-fold), in individuals who had previously received two doses of inactivated vaccines. The level of specific antibodies in the heterologous vaccination group was furthermore similar to that in individuals receiving a third dose of homologous mRNA vaccines or boosted with mRNA vaccine after natural infection. Moreover, this heterologous vaccination regime significantly enhanced the specific memory B and T cell responses. ConclusionsHeterologous prime-boost immunization with inactivated vaccine followed by an mRNA vaccine boost markedly increased the levels of specific antibodies and B and T cell responses and may thus increase protection against emerging SARS-CoV-2 variants including Omicron.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267523

RESUMEN

The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and classified as a variant of concern (VOC). Omicron shows substantially more mutations in the spike protein than any previous variant, mostly in the receptor binding domain (RBD). We analyzed the binding of the Omicron RBD to the human ACE2 receptor (hACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta or Delta RBDs variants. All RBDs were produced in insect cells. RBD binding to hACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 58 fully vaccinated individuals and 16 booster recipients were titrated by ELISA on the fixed RBDs from the original Wuhan strain, Beta, Delta and Omicron VOC. Surprisingly, the Omicron RBD showed a weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. However, a difference of 2.5 times was observed in RBD binding while in other studies the neutralization of Omicron SARS-CoV-2 was reduced by a magnitude of 10x and more. These results indicate an immune escape focused on neutralizing antibodies. The reduced binding of sera to Omicron RBD adds evidence that current vaccination protocols may be less efficient against the Omicron variant.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-463699

RESUMEN

BackgroundInformation concerning the longevity of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in convalescent coronavirus disease-2019 (COVID-19) patients up to 15 months after symptoms onset. MethodsThe levels of anti-spike and anti-receptor binding domain antibodies and neutralizing activities were tested in a total of 188 samples from 136 convalescent patients who experience mild to critical COVID-19. Specific memory B and T cell responses were measured in 76 peripheral blood mononuclear cell samples collected from 54 patients. Twenty-three vaccinated individuals were included for comparison. FindingsFollowing a peak at day 15-28 post-infection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Plasma neutralizing activity against G614 was still detected in 87% of the patients at 6-15 months. Compared to G614, the median neutralizing titers against Beta, Gamma and Delta variants in plasma collected at early (15-103 days) and late (9-15 month) convalescence were 16- and 8-fold lower, respectively. SARS-CoV-2-specific memory B and T cells reached a peak at 3-6 months and persisted in the majority of patients up to 15 months although a significant decrease in specific T cells was observed between 6 and 15 months. ConclusionThe data suggest that antiviral specific immunity especially memory B cells in COVID-19 convalescent patients is long-lasting, but some variants of concern, including the fast-spreading Delta variant, may at least partially escape the neutralizing activity of plasma antibodies. FundingEU-ATAC consortium, the Italian Ministry of Health, the Swedish Research Council, SciLifeLab, and KAW.

11.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259500

RESUMEN

Vaccine breakthrough SARS-CoV-2 infection has been monitored in 3720 healthcare workers receiving 2 doses of BNT162b2. SARS-CoV-2 infection is detected in 33 subjects, with a 100-day cumulative incidence of 0.93%. Vaccine protection against acquisition of SARS-CoV-2 infection is 83% (95%CI: 58-93%) in the overall population and 93% (95%CI: 69-99%) in SARS-CoV-2-experienced subjects, when compared with a non-vaccinated control group from the same Institution, in which SARS-CoV-2 infection occurs in 20/346 subjects (100-day cumulative incidence: 5.78%). The infection is symptomatic in 16 (48%) vaccinated subjects vs 17 (85%) controls (p=0.001). All analyzed patients, in whom the amount of viral RNA was sufficient for genome sequencing, results infected by the alpha variant. Antibody and T-cell responses are not reduced in subjects with breakthrough infection. Evidence of virus transmission, determined by contact tracing, is observed in two (6.1%) cases. This real-world data support the protective effect of BNT162b2 vaccine. A triple antigenic exposure, such as two-dose vaccine schedule in experienced subjects, may confer a higher protection.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-427567

RESUMEN

Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19)1,2. We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C1353. CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-374769

RESUMEN

The release of neutrophil extracellular traps (NETs), a process termed NETosis, avoids pathogen spread but may cause tissue injury. NETs have been found in severe COVID-19 patients, but their role in disease development is still unknown. The aim of this study is to assess the capacity of NETs to drive epithelial-mesenchymal transition (EMT) of lung epithelial cells and to analyze the involvement of NETs in COVID-19. Neutrophils activated with PMA (PMA-Neu), a stimulus known to induce NETs formation, induce both EMT and cell death in the lung epithelial cell line, A549. Notably, NETs isolated from PMA-Neu induce EMT without cell damage. Bronchoalveolar lavage fluid of severe COVID-19 patients showed high concentration of NETs. Thus, we tested in an in vitro alveolar model the hypothesis that virus-induced NET may drive EMT. Co-culturing A549 at air-liquid interface with alveolar macrophages, neutrophils and SARS-CoV2, we demonstrated a significant induction of the EMT in A549 together with high concentration of NETs, IL8 and IL1{beta}, best-known inducers of NETosis. Lung tissues of COVID-19 deceased patients showed that epithelial cells are characterized by increased mesenchymal markers. These results show for the first time that NETosis plays a major role in triggering lung fibrosis in COVID-19 patients.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-371617

RESUMEN

BackgroundThe longevity of the immune response against SARS-CoV-2 is currently debated. We thus profiled the serum anti-SARS-CoV-2 antibody levels and virus specific memory B- and T-cell responses over time in convalescent COVID-19 patients. MethodsA cohort of COVID-19 patients from the Lombardy region in Italy who experienced mild to critical disease and Swedish volunteers with mild symptoms, were tested for the presence of elevated anti-spike and anti-receptor binding domain antibody levels over a period of eight months. In addition, specific memory B- and T-cell responses were tested in selected patient samples. ResultsAnti-SARS-CoV-2 antibodies were present in 85% samples collected within 4 weeks after onset of symptoms in COVID-19 patients. Levels of specific IgM or IgA antibodies declined after 1 month while levels of specific IgG antibodies remained stable up to 6 months after diagnosis. Anti-SARS-CoV-2 IgG antibodies were still present, though at a significantly lower level, in 80% samples collected at 6-8 months after symptom onset. SARS-CoV-2-specific memory B- and T-cell responses were developed in vast majority of the patients tested, regardless of disease severity, and remained detectable up to 6-8 months after infection. ConclusionsAlthough the serum levels of anti-SARS-CoV-2 IgG antibodies started to decline, virus-specific T and/or memory B cell responses increased with time and maintained during the study period (6-8 months after infection). FundingEuropean Unions Horizon 2020 research and innovation programme (ATAC), the Italian Ministry of Health, CIMED, the Swedish Research Council and the China Scholarship Council.

15.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20152322

RESUMEN

From February to April, 2020, Lombardy (Italy) was the area who worldwide registered the highest numbers of SARS-CoV-2 infection. By extensively analyzing 346 whole SARS-CoV-2 genomes, we demonstrated the simultaneous circulation in Lombardy of two major viral lineages, likely derived from multiple introductions, occurring since the second half of January. Seven single nucleotide polymorphisms (five of them non-synonymous) characterized the SARS-CoV-2 sequences, none of them affecting N-glycosylation sites. These two lineages, and the presence of two well defined clusters inside Lineage 1, revealed that a sustained community transmission was ongoing way before the first COVID-19 case found in Lombardy.

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20113373

RESUMEN

BACKGROUNDHyperimmune plasma from Covid-19 convalescent is a potential treatment for severe Covid-19. METHODSWe conducted a multicenter one arm proof of concept interventional study. Patients with Covid-19 disease with moderate-to-severe Acute Respiratory Distress Syndrome, elevated C-reactive Protein and need for mechanical ventilation and/or CPAP were enrolled. One to three 250-300 ml unit of hyperimmune plasma (neutralizing antibodies titer [≥]1:160) were administered. Primary outcome was 7-days hospital mortality. Secondary outcomes were PaO2/FiO2, laboratory and radiologic changes, as well as weaning from mechanical ventilation and safety. RESULTSThe study observed 46 patients from March, 25 to April, 21 2020. Patients were aged 63, 61% male, 30 on CPAP and 7 intubated. PaO2/FiO2 was 128 (SD 47). Symptoms and ARDS duration were 14 (SD 7) and 6 days (SD 3). Three patients (6.5%) died within 7 days. The upper one-sided 90%CI was 13.9%, allowing to reject the null hypothesis of a 15% mortality. PaO2/FiO2 increased by 112 units (95%CI 82 to142) in survivors, the chest radiogram severity decreased in 23% (95%CI 5% to 42%); CRP, Ferritin and LDH decreased by 60, 36 and 20% respectively. Weaning from CPAP was obtained in 26/30 patients and 3/7 were extubated. Five serious adverse events occurred in 4 patients (2 likely, 2 possible treatment related). CONCLUSIONSHyperimmune plasma in Covid-19 shows promising benefits, to be confirmed in a randomized controlled trial. This proof of concept study could open to future developments including hyperimmune plasma banking, development of standardized pharmaceutical products and monoclonal antibodies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA