Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Chem Phys ; 159(10)2023 Sep 14.
Article En | MEDLINE | ID: mdl-37702360

Superconcentrated aqueous electrolytes have recently emerged as a new class of electrolytes, called water-in-salt electrolytes. They are distinguished, in both weight and volume, by a quantity of salt greater than water. Currently, these electrolytes are attracting major interest, particularly for application in aqueous rechargeable batteries. These electrolytes have only a small amount of free water due to an ultrahigh salt concentration. Consequently, the electrochemical stability window of water is wider than the predicted thermodynamic value of 1.23 V. Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been shown to be shifted to more negative and positive potentials, respectively. The decrease in free water population is recognized as being involved in the increase in the electrochemical stability window of water. Here, we study the quantitative contribution of the decrease in the free water molecule concentration to the permittivity of the solution and of the activity of water to the OER and HER overpotentials when the salt concentration increases. We compare our model with that of Kornyshev and get three types of electrolyte structures: diluted, gradient of water contents, and aggregation. The theoretical calculation of the redox potentials of the OER and HER is compared with the experimentally determined electrochemical properties of aqueous LiTFSI electrolytes.

2.
Small ; 19(10): e2206789, 2023 Mar.
Article En | MEDLINE | ID: mdl-36543382

Conducting polymers show attractive characteristics as electrode materials for micro-electrochemical energy storage (MEES). However, there is a lack of characterization techniques to study conjugated/conducting polymer-based nanostructured electrodes. Here, scanning electrochemical microscopy (SECM) is introduced as a new technique for in situ characterization and acceleration of degradation processes of conducting polymers. Electrodes of PEDOT:PSS on flat silicon, silicon nanowires (SiNWs) and silicon nanotrees (SiNTrs) are analyzed by SECM in feedback mode with approach curves and chronoamperometry. The innovative degradation method using SECM reduces the time required to locally degrade polymer samples to a few thousand seconds, which is significantly shorter than the time usually required for such studies. The degradation rate is modeled using Comsol Multiphysics. The model provides an understanding of the phenomena that occur during degradation of the polymer electrode and describes them using a mathematical constant A0 and a time constant τ.

3.
Small ; 16(33): e2002855, 2020 Aug.
Article En | MEDLINE | ID: mdl-32656960

In nanosized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. In order to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy is successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments are obtained in real time upon cycling the electrode, which allows investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3 -edge measurements point out the involvement of the Fe3+ /Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4 . Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive materials.

4.
Angew Chem Int Ed Engl ; 59(37): 15913-15917, 2020 Sep 07.
Article En | MEDLINE | ID: mdl-32390281

Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Now, two distinct reduction potentials are revealed for the chemical environments of free and bound water and that both contribute to SEI formation. Free water is reduced about 1 V above bound water in a hydrogen evolution reaction (HER) and is responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.

5.
J Nanopart Res ; 19(3): 121, 2017.
Article En | MEDLINE | ID: mdl-28435390

A comparative study of amine and silver carboxylate adducts [R1COOAg-2(R2NH2)] (R1 = 1, 7, 11; R2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies (1H and 13C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.

6.
Nat Mater ; 16(4): 446-453, 2017 04.
Article En | MEDLINE | ID: mdl-27893725

Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

7.
Chemistry ; 21(35): 12465-74, 2015 Aug 24.
Article En | MEDLINE | ID: mdl-26178747

4-Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase-transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure-properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.

8.
ACS Appl Mater Interfaces ; 5(2): 310-8, 2013 Jan 23.
Article En | MEDLINE | ID: mdl-23206560

Palladium-silver mesowires are prepared by electrochemical decoration of graphite step-edges with a good control of the alloy composition and wire diameter. As-prepared arrays are used for hydrogen sensing and demonstrate extended detection capabilities up to the whole concentration range of H(2) depending on the alloy composition. At low silver content, low hydrogen concentration is detected but the sensing window is narrow because of sensor saturation. The sensing window is advantageously extended to higher hydrogen concentrations for quantitative measurements up to pure H(2) flows with Ag-rich alloys. The mechanism responsible for these behaviors implies the statistical distribution in surface composition rather than the structural characteristics and stability domains of the corresponding hydride phases.

9.
Nanoscale ; 4(6): 1964-7, 2012 Mar 21.
Article En | MEDLINE | ID: mdl-22327337

A hydrogen sensor based on a novel fabrication process that combines the precision of advanced nano-fabrication techniques with a bottom-up process based on electrochemistry is presented. The sensor allows for reliable detection between 0.1% and 100% of H(2) in air. This fabrication is very versatile, highly reliable, and fully scalable for mass production, representing a very promising option for the fabrication of the next generation hydrogen sensors.


Conductometry/instrumentation , Hydrogen/analysis , Nanostructures/chemistry , Nanostructures/ultrastructure , Palladium/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Hydrogen/chemistry , Particle Size
10.
ACS Appl Mater Interfaces ; 2(12): 3493-505, 2010 Dec.
Article En | MEDLINE | ID: mdl-21114252

The thermal behavior of a series of MnO2 materials was investigated toward MnO2 microstructures under inert atmospheres. The byproduct formed during MnO2 heat treatments from the room temperature to 800 °C were characterized by in situ X-ray diffraction analyses. It was found that annealing spinel and ramsdellite phases caused the formation of MnO2 pyrolusite at 200 °C, Mn2O3, at 400 °C, and then Mn3O4 at higher temperatures. In the case of cryptomelane and birnessite phases, the heating process resulted in the formation of K0.51Mn0.93O2 at 600 °C, while Mn3O4 was also formed and still present up to 800 °C. Heat-treating Ni-todorokite and OMS-5 up to about 450 °C led to the formation of NiMn2O4 and NaxMnO2, respectively, and again Mn3O4 at higher temperatures. All of these structural transformations were correlated to resulting weight losses of MnO2 powders, measured by thermogravimetric analyses, during the heating process. Cyclic voltammetry measurements were performed in the presence of 0.5 M K2SO4 aqueous solution for annealed cryptomelane, K0.51Mn0.93O2, and Mn3O4-based electrodes. It was found that MnO2 cryptomelane is electrochemically stable upon heating. The long-term charge/discharge voltammetric cycling revealed that the specific capacitance of Mn3O4-based electrode is significantly improved from 14 F·g(-1) (after 20 cycles) to 123 F·g(-1) (after 500 cycles).


Electric Capacitance , Electrodes , Manganese Compounds/chemistry , Oxides/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Temperature
11.
ACS Appl Mater Interfaces ; 1(5): 1130-9, 2009 May.
Article En | MEDLINE | ID: mdl-20355901

The charge-storage mechanism in manganese dioxide (MnO2)-based electrochemical supercapacitors was investigated and discussed toward prepared MnO2 microstructures. The preparation of a series of MnO2 allotropic phases was performed by following dedicated synthetic routes. The resulting compounds are classified into three groups depending on their crystal structures based on 1D channels, 2D layers, or 3D interconnected tunnels. The 1D group includes pyrolusite, ramsdellite, cryptomelane, Ni-doped todorokite (Ni-todorokite), and OMS-5. The 2D and 3D groups are composed of birnessite and spinel, respectively. The prepared MnO2 powders were characterized using X-ray diffraction, scanning electron microscopy, the Brunauer-Emmett-Teller technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. The influence of the MnO2 microstructure on the electrochemical performance of MnO2-based electrodes is commented on through the specific surface area and the electronic and ionic conductivities. It was demonstrated that the charge-storage mechanism in MnO2-based electrodes is mainly faradic rather than capacitive. The specific capacitance values are found to increase in the following order: pyrolusite (28 Fx g(-1)) < Ni-todorokite < ramsdellite < cryptomelane < OMS-5 < birnessite < spinel (241 Fx g(-1)). Thus, increasing the cavity size and connectivity results in the improvement of the electrochemical performance. In contrast with the usual assumption, the electrochemical performance of MnO2-based electrodes was not dependent on the specific surface area. The electronic conductivity was shown to have a limited impact as well. However, specific capacitances of MnO2 forms were strongly correlated with the corresponding ionic conductivities, which obviously rely on the microstructure. The CV experiments confirmed the good stability of all MnO2 phases during 500 charge/discharge cycles.

12.
Chemphyschem ; 4(2): 131-8, 2003 Feb 17.
Article En | MEDLINE | ID: mdl-12619411

We describe two related methods for preparing arrays of nanowires composed of molybdenum, copper, nickel, gold, and palladium. Nanowires were obtained by selectively electrodepositing either a metal oxide or a metal at the step edges present on the basal plane of highly oriented pyrolytic graphite (HOPG) electrodes. If a metal oxide was electrodeposited, then nanowires of the parent metal were obtained by reduction at elevated temperature in hydrogen. The resulting nanowires were organized in parallel arrays of 100-1000 wires. These nanowires were long (some > 500 microns), polycrystalline, and approximately hemicylindrical in cross-section. The nanowire arrays prepared by electrodeposition were also "portable": After embedding the nanowires in a polymer or cyanoacrylate film, arrays of nanowires could be lifted off the graphite surface thereby facilitating the incorporation of metal nanowire arrays into devices such as sensors.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(13): 2869-75, 2002 Nov.
Article En | MEDLINE | ID: mdl-12477031

Raman and infrared analysis of the new compounds: ReO3(ClO4), an ivory-white solid, and (ClO2)xReO3(ClO4)1+x (x < or = 1), an orange-red chloryl salt, showed that bridging bidentate [ClO4] and terminal ReO3 groups are present in both complexes. Vibrational data on [ClO4] in ReO3(ClO4) were compared to those obtained experimentally and by DFT calculation on a bridging bidentate [ClO4] in Sb2Cl6(O)(OH)(ClO4).


Antimony/chemistry , Perchlorates/chemistry , Rhenium/chemistry , Perchlorates/chemical synthesis , Spectrophotometry, Infrared , Spectrum Analysis, Raman
14.
Inorg Chem ; 41(16): 4173-8, 2002 Aug 12.
Article En | MEDLINE | ID: mdl-12160405

Chlorine trioxide, Cl(2)O(6), reacts with Au metal, AuCl(3), or HAuCl(4).nH(2)O to yield the well-defined chloryl salt, ClO(2)Au(ClO(4))(4). The crystal and molecular structure of ClO(2)Au(ClO(4))(4) was solved by a Rietveld analysis of powder X-ray diffraction data. The salt crystallizes in a monoclinic cell, space group C2/c, with cell parameters a = 15.074(5), b = 5.2944(2), and c = 22.2020(2) A and beta = 128.325(2) degrees. The structure displays discrete ClO(2)(+) ions lying in channels formed by Au(ClO(4))(4)(-) stacks. Au is located in a distorted square planar environment: Au-O = 1.87 and 2.06 A. [ClO(4)] groups are monodentate with ClO(b) = 1.53 and ClO(t) = 1.39 A (mean distances; O(b), oxygen bonded to Au; O(t), free terminal oxygen). A full vibrational study of the Au(ClO(4))(4)(-) anion is supported by DFT calculations.

...