Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Circ Arrhythm Electrophysiol ; 15(3): e010630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35238622

RESUMEN

BACKGROUND: Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. METHODS: We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. RESULTS: We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (P=0.003), whereas acetylcholine (100 µM) stimulation alone had no effect on action potential duration at 80% repolarization or premature ventricular contractions. However, acetylcholine treatment after isoproterenol stimulation reduced the incidence of premature ventricular contractions (P=0.034) and partially reversed action potential duration at 80% repolarization shortening (P=0.029). Immunolabeling of RVOT (n=4) confirmed the presence of cholinergic marker VAChT (vesicular acetylcholine transporter) in the region. Rapid pacing revealed RVOT susceptibility to both concordant and discordant alternans. Investigation into transmural arrhythmia dynamics showed that arrhythmia wave fronts and phase singularities (rotors) were relatively more organized in the endocardium than in the epicardium (P=0.006). Moreover, there was a weak but positive spatiotemporal autocorrelation between epicardial and endocardial arrhythmic wave fronts and rotors. Transcriptome analysis (n=10 hearts) suggests a trend that MAPK (mitogen-activated protein kinase) signaling, calcium signaling, and cGMP-PKG (protein kinase G) signaling are among the pathways that may be enriched in the male RVOT, whereas pathways of neurodegeneration may be enriched in the female RVOT. CONCLUSIONS: Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.


Asunto(s)
Taquicardia Ventricular , Complejos Prematuros Ventriculares , Acetilcolina/farmacología , Adrenérgicos , Electrofisiología Cardíaca , Colinérgicos , Electrocardiografía , Femenino , Ventrículos Cardíacos , Derechos Humanos , Humanos , Isoproterenol/farmacología , Masculino , Pericardio , Taquicardia Ventricular/etiología
3.
Nat Biomed Eng ; 4(10): 997-1009, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32895515

RESUMEN

The rigidity and relatively primitive modes of operation of catheters equipped with sensing or actuation elements impede their conformal contact with soft-tissue surfaces, limit the scope of their uses, lengthen surgical times and increase the need for advanced surgical skills. Here, we report materials, device designs and fabrication approaches for integrating advanced electronic functionality with catheters for minimally invasive forms of cardiac surgery. By using multiphysics modelling, plastic heart models and Langendorff animal and human hearts, we show that soft electronic arrays in multilayer configurations on endocardial balloon catheters can establish conformal contact with curved tissue surfaces, support high-density spatiotemporal mapping of temperature, pressure and electrophysiological parameters and allow for programmable electrical stimulation, radiofrequency ablation and irreversible electroporation. Integrating multimodal and multiplexing capabilities into minimally invasive surgical instruments may improve surgical performance and patient outcomes.


Asunto(s)
Catéteres Cardíacos , Electrónica/instrumentación , Monitoreo Intraoperatorio/instrumentación , Monitoreo Intraoperatorio/métodos , Animales , Ablación por Catéter , Electroporación , Diseño de Equipo , Femenino , Análisis de Elementos Finitos , Ventrículos Cardíacos/cirugía , Humanos , Presión , Conejos , Temperatura
4.
Circ Arrhythm Electrophysiol ; 11(11): e006692, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30376733

RESUMEN

BACKGROUND: Abnormal QT intervals, long QT or short QT, have been epidemiologically linked with sudden cardiac death because of ventricular fibrillation (VF). Consequently, Food and Drug Administration recommends testing all pharmacological agents for QT toxicity as a risk factor for cardiac toxicity. Such tests assess QT/QTc interval, which represents ventricular depolarization and repolarization. However, the current QT toxicity analysis does not account for the well-known anisotropy in cardiac tissue conductivity. Mines demonstrated in 1913 that cardiac wavelength (λ) determines inducibility of reentrant arrhythmia, where both repolarization time or action potential duration and conduction velocity determine λ=action potential duration×conduction velocity. We aimed to determine the role of anisotropic wavelength in inducibility of VF in explanted human left ventricular preparations. We tested the hypothesis that 3-dimensional cardiac wavelength, which takes into account anisotropic cardiac tissue conductivity, can accurately predict VF sustainability. METHODS: We conducted panoramic optical mapping of coronary perfused human left ventricular wedge preparations subjected to pharmacologically induced shortening and prolongation of action potential duration, by IK,ATP agonist pinacidil and antagonist glybenclamide, respectively. This measured action potential duration, conduction velocity, and thus determined pacing cycle length-dependent wavelengths in longitudinal (λL), transverse (λTV), and transmural (λTM) directions using S1S1 pacing protocol, from which wavelength volume (Vλ) was determined, as Vλ=λL×λTV×λTM, and compared with tissue volume. We tested a hypothesis that tissue volume/Vλ ratio can predict VF sustainability. RESULTS: At baseline, at pacing rate of 240 beats per minute, the wavelengths were λL=9.6±0.6 cm, λTV=4.2±0.3 cm, and λTM=5.8±0.2 cm, respectively (n=7), and thus Vλ=246.4±42.1 cm3. Administration of pinacidil at escalating concentrations progressively decreased Vλ, and VF became sustained, when tissue volume/Vλ was above safety factor κ=4.4±0.6 (n=9) during rapid pacing. Treatment with glybenclamide decreased VT/Vλ below κ at any pacing rate and prevented VF sustainability. CONCLUSIONS: Sustained VF was only sustained in ventricular volume exceeding critical Vλ=λL×λTV×λTM.


Asunto(s)
Corazón/anatomía & histología , Fibrilación Ventricular/fisiopatología , Potenciales de Acción/fisiología , Anisotropía , Estimulación Cardíaca Artificial , Gliburida/farmacología , Corazón/diagnóstico por imagen , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Técnicas In Vitro , Imagen Óptica/métodos , Tamaño de los Órganos , Pinacidilo/farmacología , Estudios Prospectivos , Procesamiento de Señales Asistido por Computador , Fibrilación Ventricular/tratamiento farmacológico
5.
Circ Arrhythm Electrophysiol ; 11(8): e005913, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30354313

RESUMEN

Background Papillary muscles are an important source of ventricular tachycardia (VT). Yet little is known about the role of the right ventricular (RV) endocavity structure, the moderator band (MB). The aim of this study was to determine the characteristics of the MB that may predispose to arrhythmia substrates. Methods Ventricular wedge preparations with intact MBs were studied from humans (n=2) and sheep (n=15; 40-50 kg). RV endocardium was optically mapped, and electrical recordings were measured along the MB and septum. S1S2 pacing of the RV free wall, MB, or combined S1-RV S2-MB sites were assessed. Human (n=2) and sheep (n=4) MB tissue constituents were assessed histologically. Results The MB structure was remarkably organized as 2 excitable, yet uncoupled compartments of myocardium and Purkinje. In humans, action potential duration heterogeneity between MB and RV myocardium was found (324.6±12.0 versus 364.0±8.4 ms; P<0.0001). S1S2-MB pacing induced unidirectional propagation via MB myocardium, permitting sustained macroreentrant VT. In sheep, the incidence of VT for RV, MB, and S1-RV S2-MB pacing was 1.3%, 5.1%, and 10.3%. Severing the MB led to VT termination, confirming a primary arrhythmic role. Inducible preparations had shorter action potential duration in the MB than RV (259.3±45.2 versus 300.7±38.5 ms; P<0.05), whereas noninducible preparations showed no difference (312.0±30.3 versus 310.0±24.6 ms, respectively). Conclusions The MB presents anatomic and electrical compartmentalization between myocardium and Purkinje fibers, providing a substrate for macroreentry. The vulnerability to sustain VT via this mechanism is dependent on MB structure and action potential duration gradients between the RV free wall and MB.


Asunto(s)
Potenciales de Acción , Frecuencia Cardíaca , Músculos Papilares/fisiopatología , Taquicardia Ventricular/etiología , Animales , Estimulación Cardíaca Artificial , Simulación por Computador , Técnicas Electrofisiológicas Cardíacas , Humanos , Técnicas In Vitro , Modelos Cardiovasculares , Miocardio/patología , Músculos Papilares/patología , Ramos Subendocárdicos/fisiopatología , Oveja Doméstica , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje
6.
Chem Phys Lipids ; 200: 74-82, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421664

RESUMEN

In this work, we studied the interaction of two oxidized lipids, PoxnoPC and PazePC, with POPC phospholipid. Mean molecular areas obtained from (π-A) isotherms of mixed PoxnoPC-POPC and PazePC-POPC monolayers revealed different behaviors of these two oxidized lipids: the presence of PoxnoPC in the monolayers induces their expansion, mean molecular areas being higher than those expected in the case of ideal mixtures. PazePC-POPC behave on the whole ideally. This difference can be explained by a different conformation of oxidized lipids. Moreover the carboxylic function of PazePC is protonated under our experimental conditions, as shown by (π-A) isotherms of PazePC at different pH values. Both oxidized lipids induce also an increase of the monolayer elasticity, PoxnoPC being slightly more efficient than PazePC. These monolayers were transferred from the air-water interface onto mica supports for a study by AFM. AFM images are on the whole homogenous, suggesting the presence of only one lipid phase in both cases. However, in the case of PazePC-POPC monolayers, AFM images show also the presence of areas thicker of 7nm to 10nm than the surrounding lipid phase, probably due to the local formation of multilayer systems induced by compression.


Asunto(s)
Fosfatidilcolinas/química , Microscopía de Fuerza Atómica , Conformación Molecular , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA