Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 241, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34749730

RESUMEN

BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.


Asunto(s)
Escarabajos , Gorgojos , Animales , Comunicación Celular , Elementos Transponibles de ADN/genética , Grano Comestible , Humanos , Gorgojos/genética
2.
Genome Biol ; 20(1): 64, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30935422

RESUMEN

BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.


Asunto(s)
Evolución Molecular , Genoma de los Insectos , Hemípteros/genética , Secuencia de Aminoácidos , Animales , Dedos de Zinc CYS2-HIS2 , Conducta Alimentaria , Dosificación de Gen , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Genes Homeobox , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Pigmentación/genética , Olfato , Factores de Transcripción/genética
3.
Front Physiol ; 9: 1498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410449

RESUMEN

Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.

4.
Proc Natl Acad Sci U S A ; 115(8): E1819-E1828, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432146

RESUMEN

Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Simbiosis/fisiología , Animales , Muerte Celular , Lisosomas
5.
Sci Rep ; 6: 34321, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694983

RESUMEN

Phenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development.


Asunto(s)
Áfidos/embriología , Fertilidad , Longevidad , Partenogénesis , Fenilalanina Hidroxilasa/genética , Pisum sativum/parasitología , Animales , Áfidos/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Filogenia
6.
Artículo en Inglés | MEDLINE | ID: mdl-27242037

RESUMEN

Arthropods interact with humans at different levels with highly beneficial roles (e.g. as pollinators), as well as with a negative impact for example as vectors of human or animal diseases, or as agricultural pests. Several arthropod genomes are available at present and many others will be sequenced in the near future in the context of the i5K initiative, offering opportunities for reconstructing, modelling and comparing their metabolic networks. In-depth analysis of these genomic data through metabolism reconstruction is expected to contribute to a better understanding of the biology of arthropods, thereby allowing the development of new strategies to control harmful species. In this context, we present here ArthropodaCyc, a dedicated BioCyc collection of databases using the Cyc annotation database system (CycADS), allowing researchers to perform reliable metabolism comparisons of fully sequenced arthropods genomes. Since the annotation quality is a key factor when performing such global genome comparisons, all proteins from the genomes included in the ArthropodaCyc database were re-annotated using several annotation tools and orthology information. All functional/domain annotation results and their sources were integrated in the databases for user access. Currently, ArthropodaCyc offers a centralized repository of metabolic pathways, protein sequence domains, Gene Ontology annotations as well as evolutionary information for 28 arthropod species. Such database collection allows metabolism analysis both with integrated tools and through extraction of data in formats suitable for systems biology studies.Database URL: http://arthropodacyc.cycadsys.org/.


Asunto(s)
Artrópodos/genética , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Internet , Programas Informáticos , Animales , Anotación de Secuencia Molecular
7.
Sci Rep ; 6: 19967, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26822159

RESUMEN

Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate the absolute numbers of symbionts at key stages of aphid life. The endosymbiont population increases exponentially throughout nymphal development, showing a growing rate which has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that the endosymbiont-bearing cells (bacteriocytes) increase significantly in number and size during the nymphal development, and clustering in the insect abdomen. Once adulthood is reached and the laying period has begun, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and the bacteriocyte structure degenerates during insect aging. In summary, these results show a coordination of the cellular dynamics between bacteriocytes and primary symbionts and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development.


Asunto(s)
Áfidos/microbiología , Simbiosis , Animales , Carga Bacteriana , Buchnera/fisiología , Citometría de Flujo
8.
Insect Biochem Mol Biol ; 51: 20-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859468

RESUMEN

RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids.


Asunto(s)
Áfidos/fisiología , Catepsina L/genética , Interferencia de ARN , Animales , Áfidos/genética , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/enzimología , Técnicas de Silenciamiento del Gen/métodos , Muda/genética , Muda/fisiología , Fenotipo , ARN Bicatenario/administración & dosificación
9.
BMC Genomics ; 14: 235, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575215

RESUMEN

BACKGROUND: Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. RESULTS: We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development. CONCLUSIONS: Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Pisum sativum , Simbiosis , Tirosina/metabolismo , Animales , Áfidos/metabolismo , Áfidos/fisiología , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Mol Microbiol ; 81(5): 1271-85, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21797941

RESUMEN

Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions.


Asunto(s)
Áfidos/metabolismo , Buchnera/metabolismo , Aminoácidos Esenciales/genética , Aminoácidos Esenciales/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Áfidos/microbiología , Buchnera/genética , Productos Agrícolas , Variaciones en el Número de Copia de ADN , Genoma Bacteriano , Leucina/biosíntesis , Redes y Vías Metabólicas/genética , Plásmidos , Simbiosis/genética , Simbiosis/fisiología
11.
Database (Oxford) ; 2011: bar008, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21474551

RESUMEN

In recent years, genomes from an increasing number of organisms have been sequenced, but their annotation remains a time-consuming process. The BioCyc databases offer a framework for the integrated analysis of metabolic networks. The Pathway tool software suite allows the automated construction of a database starting from an annotated genome, but it requires prior integration of all annotations into a specific summary file or into a GenBank file. To allow the easy creation and update of a BioCyc database starting from the multiple genome annotation resources available over time, we have developed an ad hoc data management system that we called Cyc Annotation Database System (CycADS). CycADS is centred on a specific database model and on a set of Java programs to import, filter and export relevant information. Data from GenBank and other annotation sources (including for example: KAAS, PRIAM, Blast2GO and PhylomeDB) are collected into a database to be subsequently filtered and extracted to generate a complete annotation file. This file is then used to build an enriched BioCyc database using the PathoLogic program of Pathway Tools. The CycADS pipeline for annotation management was used to build the AcypiCyc database for the pea aphid (Acyrthosiphon pisum) whose genome was recently sequenced. The AcypiCyc database webpage includes also, for comparative analyses, two other metabolic reconstruction BioCyc databases generated using CycADS: TricaCyc for Tribolium castaneum and DromeCyc for Drosophila melanogaster. Linked to its flexible design, CycADS offers a powerful software tool for the generation and regular updating of enriched BioCyc databases. The CycADS system is particularly suited for metabolic gene annotation and network reconstruction in newly sequenced genomes. Because of the uniform annotation used for metabolic network reconstruction, CycADS is particularly useful for comparative analysis of the metabolism of different organisms. Database URL: http://www.cycadsys.org.


Asunto(s)
Bases de Datos Genéticas , Genómica/estadística & datos numéricos , Redes y Vías Metabólicas , Anotación de Secuencia Molecular/estadística & datos numéricos , Algoritmos , Animales , Genómica/métodos , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Programas Informáticos
12.
PLoS One ; 6(12): e29096, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22229056

RESUMEN

Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Membrana Celular/metabolismo , Genómica/métodos , Proteínas de Transporte de Membrana/genética , Simbiosis/genética , Animales , Transporte Biológico , Buchnera/citología , Buchnera/ultraestructura , Membrana Celular/ultraestructura , Genes Bacterianos/genética , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Microscopía Confocal
13.
C R Biol ; 332(11): 1034-49, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19909925

RESUMEN

Buchnera aphidicola is the primary obligate intracellular symbiont of most aphid species. B. aphidicola and aphids have been evolving in parallel since their association started, about 150 Myr ago. Both partners have lost their autonomy, and aphid diversification has been confined to smaller ecological niches by this co-evolution. B. aphidicola has undergone major genomic and biochemical changes as a result of adapting to intracellular life. Several genomes of B. aphidicola from different aphid species have been sequenced in the last decade, making it possible to carry out analyses and comparative studies using system-level in silico methods. This review attempts to provide a systemic description of the symbiotic function of aphid endosymbionts, particularly of B. aphidicola from the pea aphid Acyrthosiphon pisum, by analyzing their structural genomic properties, as well as their genetic and metabolic networks.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Genoma Bacteriano , Genómica , Pisum sativum/parasitología , Simbiosis/fisiología , Aminoácidos/metabolismo , Animales , Áfidos/citología , Áfidos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Buchnera/clasificación , Buchnera/genética , Cromosomas Bacterianos/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Genes Bacterianos , Flujo Genético , Redes y Vías Metabólicas/genética , Filogenia , Simbiosis/genética
14.
Appl Environ Microbiol ; 75(22): 7294-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19783752

RESUMEN

Of the 617 genes from Buchnera aphidicola, the obligate bacterial symbiont of the pea aphid, 23% were differentially expressed in embryos compared to adults. Genes involved in flagellar apparatus and riboflavin synthesis exhibited particularly robust upregulation in embryos, suggesting functional differences between the symbiosis in the adult and embryo insect.


Asunto(s)
Áfidos/microbiología , Buchnera/genética , Buchnera/metabolismo , Perfilación de la Expresión Génica , Simbiosis/fisiología , Envejecimiento , Animales , Embrión no Mamífero/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Regulación hacia Arriba
15.
Arch Insect Biochem Physiol ; 68(1): 26-39, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18271014

RESUMEN

Biological and biochemical parameters of a flightless strain of Harmonia axyridis, fed on a pork liver-based artificial diet and on Ephestia kuehniella eggs as controls, were compared. The diet-grown larvae showed a significantly longer developmental time and a lower adult emergence rate compared to control larvae. The weights of the newly emerged adults were significantly higher for adults fed E. kuehniella eggs during their larval stages than fed the artificial diet. In contrast, larval food source had no effect on the duration of the pre-oviposition period or adult longevity. For adults fed on E. kuehniella eggs as larvae, a significantly longer pre-oviposition period, lower daily weight gain and fecundity were found for the diet-fed females compared to those fed on E. kuehniella eggs throughout the life span. The adult food source had no significant effect on longevity and fertility. Lower amino acid and fatty acid contents (in particular C16:1 and C18:3n-3) were found for the prepupae and newly emerged females obtained from diet-reared larvae compared to controls. Deficiencies in fatty acids C16:1 and C18:3n-3 were also observed in females obtained from E. kuehniella egg-reared larvae and fed on diet from adult emergence. The analyses of the foods showed deficiencies in artificial diet, especially for some amino and fatty acids. The results suggest a non-optimal composition of the artificial diet and some possibilities for its improvement. However, this polyphagous predator could be reared from first instar larvae to fully reproductive adults on a pork liver-based artificial diet.


Asunto(s)
Crianza de Animales Domésticos/normas , Escarabajos/crecimiento & desarrollo , Dieta/normas , Aminoácidos/metabolismo , Animales , Escarabajos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Larva/crecimiento & desarrollo , Larva/metabolismo , Lepidópteros , Hígado , Óvulo , Control de Calidad
16.
BMC Genomics ; 8: 143, 2007 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-17547756

RESUMEN

BACKGROUND: Genomic studies on bacteria have clearly shown the existence of chromosomal organization as regards, for example, to gene localization, order and orientation. Moreover, transcriptomic analyses have demonstrated that, in free-living bacteria, gene transcription levels and chromosomal organization are mutually influenced. We have explored the possible conservation of relationships between mRNA abundances and chromosomal organization in the highly reduced genome of Buchnera aphidicola, the primary endosymbiont of the aphids, and a close relative to Escherichia coli. RESULTS: Using an oligonucleotide-based microarray, we normalized the transcriptomic data by genomic DNA signals in order to have access to inter-gene comparison data. Our analysis showed that mRNA abundances, gene organization (operon) and gene essentiality are correlated in Buchnera (i.e., the most expressed genes are essential genes organized in operons) whereas no link between mRNA abundances and gene strand bias was found. The effect of Buchnera genome evolution on gene expression levels has also been analysed in order to assess the constraints imposed by the obligate symbiosis with aphids, underlining the importance of some gene sets for the survival of the two partners. Finally, our results show the existence of spatial periodic transcriptional patterns in the genome of Buchnera. CONCLUSION: Despite an important reduction in its genome size and an apparent decay of its capacity for regulating transcription, this work reveals a significant correlation between mRNA abundances and chromosomal organization of the aphid-symbiont Buchnera.


Asunto(s)
Buchnera/genética , Cromosomas Bacterianos/genética , Genoma Bacteriano/genética , Transcripción Genética , Análisis de Varianza , Animales , Áfidos/microbiología , ADN Bacteriano , Evolución Molecular , Genes Bacterianos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reproducibilidad de los Resultados
17.
Appl Environ Microbiol ; 72(12): 7760-6, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17041159

RESUMEN

Symbiotic associations involving intracellular microorganisms and animals are widespread, especially for species feeding on poor or unbalanced diets. Buchnera aphidicola, the obligate intracellular bacterium associated with most aphid species, provides its hosts with essential amino acids (EAAs), nutrients in short supply in the plant phloem sap. The Buchnera genome has undergone severe reductions during intracellular evolution. Genes for EAA biosynthesis are conserved, but most of the transcriptional regulatory elements are lost. This work addresses two main questions: is transcription in Buchnera (i) regulated and (ii) scaled to aphid EAA demand? Two microarray experiments were designed for profiling the gene expression in Buchnera. The first one was characterized by a specific depletion of tyrosine and phenylalanine in the aphid diet, and the second experiment combined a global diminution of EAAs in the aphid diet with a sucrose concentration increase to manipulate the aphid growth rate. Aphid biological performance and budget analysis (the balance between EAAs provided by the diet and those synthesized by Buchnera) were performed to quantify the nutritional demand from the aphids toward their symbiotic bacteria. Despite the absence of known regulatory elements, a significant transcriptional regulation was observed at different levels of organization in the Buchnera genome: between genes, within putative transcription units, and within specific metabolic pathways. However, unambiguous evidence for transcriptional changes underpinning the scaling of EAA biosynthesis to aphid demand was not obtained. The phenotypic relevance of the transcriptional response from the reduced genome of Buchnera is addressed.


Asunto(s)
Áfidos/microbiología , Buchnera/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Transcripción Genética , Aminoácidos Esenciales/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Áfidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Buchnera/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Sacarosa/metabolismo , Simbiosis
18.
Arch Insect Biochem Physiol ; 60(2): 84-92, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16175535

RESUMEN

Improvement of an existing meat-based diet has been obtained for rearing the generalist predator Dicyphus tamaninii (Heteroptera: Miridae). The approach followed, different from the classical addition/deletion method, was performing biochemical analysis of adult carcasses in order to have information about the nutritional status of the predator. Comparison of total, free amino acids and lipid composition of meat-reared and conventionally reared females allowed detecting some nutritional deficiencies. A reformulated diet with new sources of proteins and lipids was tested again with the predator. Some biological parameters of bugs that were inferior in the initial meat diet when compared with those of the conventionally reared insects, such as nymphal development time and fresh weight, have been improved with the reformulated diet.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Heterópteros/anatomía & histología , Heterópteros/química , Carne , Aminoácidos/análisis , Animales , Huevos , Ácidos Grasos/análisis , Femenino , Lepidópteros , Ninfa/fisiología , Conducta Predatoria , Nicotiana
19.
J Microbiol Methods ; 57(2): 207-18, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15063061

RESUMEN

Parallel quantification of a large number of messenger RNA transcripts, using microarray technology, promises to provide unsuspected information about many cellular processes. Although experimental protocols on microarray applications are available, only limited methodological information on glass-slide manufacturing and signal interpretation has been published. The aim of this paper is to provide new insights into the practical aspects of the construction and hybridization of oligonucleotide-based microarrays. The intracellular symbiotic bacterium of aphids, Buchnera aphidicola, is used here as a model organism. The first part of the work is devoted to the optimization of procedures for printing slides, labeling of cDNA targets and hybridization. In the second part, based on a statistical analysis of the results, we discuss the influence of the probe attachment chemistry, of the labeling method, of the oligonucleotide position and of the concentration of a spotted oligonucleotide on signal intensity. The problem of signal specificity is also addressed, based on the calculation of the fluorescent ratio for each probe to its corresponding mismatch control probe. Lastly, the selection of internal spiked RNAs appropriate to our bacterial samples and useful for the data normalization step is presented.


Asunto(s)
Buchnera/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Disparidad de Par Base , ADN Complementario/química , ADN Complementario/genética , Fluorescencia , Hibridación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , Sensibilidad y Especificidad
20.
J Insect Physiol ; 50(12): 1137-50, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15670861

RESUMEN

Concanavalin A (lectin from Canavalia ensiformis L., ConA) has previously been shown to act as a feeding inhibitor for Acyrthosiphon pisum, the pea aphid. In the present study a range of histochemical and biochemical techniques were used to elucidate the target tissues and binding sites of the lectin in the aphid. Diet uptake was evaluated using a radioactive tracer (14C-methylated inulin) and demonstrated that adults were capable of ingesting high quantities of the toxin (approx. 1 microg over a 48 h period). Electophoretic analysis and enzyme-linked immuno-sorbent assay of honeydew samples confirmed these results and further demonstrated that only small levels of ConA were excreted. Histofluorescence and immunolocalisation studies on nymphs revealed that the stomach was the primary target for ConA. At concentrations up to 400 microg ml(-1), lectin binding only occurred in the stomach region, however, at high concentrations (800 microg ml(-1)) the whole digestive tract was stained, although there was no evidence of binding in either the oesophagus or rectum. In addition to binding, there was evidence to suggest that ConA was also causing systemic effects in that the lectin appeared to cross the intestinal epithelial barrier. Immunohistochemical and electron microscopy studies revealed that ConA induced severe cellular swelling of the epithelial cells, accompanied by hypersecretion and a progressive detachment of the apical membrane; however, the striated border itself did not appear to be directly affected. Furthermore, there was no lysis of the epithelium, nor loss of integrity of the epithelial cells themselves. Our results suggest that ConA interacts with glycosylated receptors at the surface of the stomach epithelial cells, interfering with normal metabolism and cell function, resulting in a rapid feedback response on feeding behaviour. Whilst our results provide a much greater understanding regarding the modes of action of ConA in insects, they suggest that different lectins, including other mannose binding lectins, have different modes of action at the cellular levels, and thus generalizations should be treated with caution.


Asunto(s)
Áfidos/fisiología , Concanavalina A/farmacología , Tracto Gastrointestinal/efectos de los fármacos , Animales , Áfidos/anatomía & histología , Áfidos/metabolismo , Áfidos/ultraestructura , Concanavalina A/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Tracto Gastrointestinal/metabolismo , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Control Biológico de Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA