Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979015

RESUMEN

Donor organ-shortage has resulted in the increased use of marginal grafts; however, normothermic machine perfusion (NMP) holds the potential for organ viability assessment and restoration of marginal grafts prior to transplantation. Additionally, cell-, oxygen carrier-free and antioxidants-supplemented solutions could potentially prevent adverse effects (transfusion reactions, inflammation, hemolysis), associated with the use of autologous packed red blood cell (pRBC)-based perfusates. This study compared 6 h NMP of porcine kidneys, using an established pRBC-based perfusate (pRBC, n = 7), with the novel cell- and oxygen carrier-free organ preservation solution Ecosol, containing taurine (Ecosol, n = 7). Despite the enhanced tissue edema and tubular injury in the Ecosol group, related to a suboptimal molecular mass of polyethylene glycol as colloid present in the solution, functional parameters (renal blood flow, intrarenal resistance, urinary flow, pH) and oxygenation (arterial pO2, absence of hypoxia-inducible factor 1-alpha) were similar to the pRBC group. Furthermore, taurine significantly improved the antioxidant capacity in the Ecosol group, reflected in decreased lactate dehydrogenase, urine protein and tubular vacuolization compared to pRBC. This study demonstrates the feasibility of 6 h NMP using a taurine containing, cell- and oxygen carrier-free perfusate, achieving a comparable organ quality to pRBC perfused porcine kidneys.

2.
Biosensors (Basel) ; 13(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36979606

RESUMEN

Clot formation inside a membrane oxygenator (MO) due to blood-to-foreign surface interaction represents a frequent complication during extracorporeal membrane oxygenation. Since current standard monitoring methods of coagulation status inside the MO fail to detect clot formation at an early stage, reliable sensors for early clot detection are in demand to reduce associated complications and adverse events. Bioimpedance analysis offers a monitoring concept by integrating sensor fibers into the MO. Herein, the feasibility of clot detection via bioimpedance analysis is evaluated. A custom-made test chamber with integrated titanium fibers acting as sensors was perfused with heparinized human whole blood in an in vitro test circuit until clot formation occurred. The clot detection capability of bioimpedance analysis was directly compared to the pressure difference across the test chamber (ΔP-TC), analogous to the measurement across MOs (ΔP-MO), the clinical gold standard for clot detection. We found that bioimpedance measurement increased significantly 8 min prior to a significant increase in ΔP-TC, indicating fulminant clot formation. Experiments without clot formation resulted in a lack of increase in bioimpedance or ΔP-TC. This study shows that clot detection via bioimpedance analysis under flow conditions in a blood-perfused test chamber is generally feasible, thus paving the way for further investigation.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Humanos , Trombosis/diagnóstico , Trombosis/etiología , Oxigenadores de Membrana/efectos adversos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Coagulación Sanguínea , Presión
3.
Membranes (Basel) ; 12(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054599

RESUMEN

BACKGROUND: Clot formation on foreign surfaces of extracorporeal membrane oxygenation systems is a frequent event. Herein, we show an approach that mimics the enzymatic process of endogenous nitric oxide (NO) release on the oxygenator membrane via a biomimetic, non-fouling microgel coating to spatiotemporally inhibit the platelet (PLT) activation and improve antithrombotic properties. This study aims to evaluate the potential of this biomimetic coating towards NO-mediated PLT inhibition and thereby the reduction of clot formation under flow conditions. METHODS: Microgel-coated (NOrel) or bare (Control) poly(4-methyl pentene) (PMP) fibers were inserted into a test channel and exposed to a short-term continuous flow of human blood. The analysis included high-resolution PLT count, pooled PLT activation via ß-Thromboglobulin (ß-TG) and the visualization of remnants and clots on the fibers using scanning electron microscopy (SEM). RESULTS: In the Control group, PLT count was significantly decreased, and ß-TG concentration was significantly elevated in comparison to the NOrel group. Macroscopic and microscopic visualization showed dense layers of stable clots on the bare PMP fibers, in contrast to minimal deposition of fibrin networks on the coated fibers. CONCLUSION: Endogenously NO-releasing microgel coating inhibits the PLT activation and reduces the clot formation on PMP fibers under dynamic flow.

4.
Curr Issues Mol Biol ; 43(3): 1997-2010, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34889902

RESUMEN

BACKGROUND: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. METHODS: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. RESULTS: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. CONCLUSION: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


Asunto(s)
Anestésicos/administración & dosificación , Anestésicos/farmacocinética , Vesículas Extracelulares/metabolismo , Animales , Biomarcadores , Línea Celular , Vesículas Extracelulares/ultraestructura , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Isquemia/prevención & control , Precondicionamiento Isquémico , Masculino , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Ratas
5.
Nutrients ; 11(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374900

RESUMEN

Systemic and localized ischemia and reperfusion injury remain clinically relevant issues after organ transplantation and contribute to organ dysfunctions, among which acute kidney injury is one of the most common. An in vitro test-circuit for normothermic perfusion of porcine kidneys after warm ischemia was used to investigate the antioxidant properties of vitamin C during reperfusion. Vitamin C is known to enhance microcirculation, reduce endothelial permeability, prevent apoptosis, and reduce inflammatory reactions. Based on current evidence about the pleiotropic effects of vitamin C, we hypothesize that the antioxidant properties of vitamin C might provide organ-protection and improve the kidney graft function in this model of ischemia and reperfusion. METHODS: 10 porcine kidneys from 5 Landrace pigs were perfused in vitro for 6 h. For each experiment, both kidneys of one animal were perfused simultaneously with a 1:1 mixture of autologous blood and modified Ringer's solution at 38 °C and 75 mmHg continuous perfusion pressure. One kidney was treated with a 500 mg bolus injection of vitamin C into the perfusate, followed by continuous infusion of 60 mg/h vitamin C. In the control test circuit, an equal volume of Ringer's solution was administered as a placebo. Perfusate samples were withdrawn at distinct points in time during 6 h of perfusion for blood gas analyses as well as measurement of serum chemistry, oxidative stress and antioxidant capacity. Hemodynamic parameters and urine excretion were monitored continuously. Histological samples were analyzed to detect tubular- and glomerular-injury. RESULTS: vitamin C administration to the perfusate significantly reduced oxidative stress (49.8 ± 16.2 vs. 118.6 ± 23.1 mV; p = 0.002) after 6 h perfusion, and increased the antioxidant capacity, leading to red blood cell protection and increased hemoglobin concentrations (5.1 ± 0.2 vs. 3.9 ± 0.6 g/dL; p = 0.02) in contrast to placebo treatment. Kidney function was not different between the groups (creatinine clearance vit C: 2.5 ± 2.1 vs. placebo: 0.5 ± 0.2 mL/min/100 g; p = 0.9). Hypernatremia (187.8 ± 4.7 vs. 176.4 ± 5.7 mmol/L; p = 0.03), and a lower, but not significant decreased fractional sodium excretion (7.9 ± 2 vs. 27.7 ± 15.3%; p = 0.2) were observed in the vitamin C group. Histological analysis did not show differences in tubular- and glomerular injury between the groups. CONCLUSION: Vitamin C treatment increased the antioxidant capacity of in vitro perfused kidney grafts, reduced oxidative stress, preserved red blood cells as oxygen carrier in the perfusate, but did not improve clinically relevant parameters like kidney function or attenuate kidney damage. Nevertheless, due to its antioxidative properties vitamin C might be a beneficial supplement to clinical kidney graft perfusion protocols.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Riñón/efectos de los fármacos , Preservación de Órganos , Estrés Oxidativo/efectos de los fármacos , Perfusión , Daño por Reperfusión/prevención & control , Animales , Citocinas/metabolismo , Femenino , Hemoglobinas/metabolismo , Técnicas In Vitro , Riñón/metabolismo , Riñón/patología , Preservación de Órganos/efectos adversos , Perfusión/efectos adversos , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sus scrofa
6.
Interact Cardiovasc Thorac Surg ; 28(1): 120-127, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010987

RESUMEN

OBJECTIVES: The first aim was the development of a human blood miniature mock-loop system consisting of 2 identical extracorporeal circuits, which enable systematic head-to-head comparisons of test substances. In a second step, we evaluated the suitability of the mock-loop system, by comparing 2 different brands of heparin (ROTEXMEDICA vs B.BRAUN), which have showed different anticoagulation capacities in the clinic. METHODS: For 1 experiment (18 in total), blood of the same healthy human donor was divided into 2 portions (2 × 50 ml), heparinized with 37.5 IU⋅ml-1 of the competing test substances and diluted to a haematocrit value of 20-25%. Each mock loop was filled with 70 ml, and in vivo heparin degradation was simulated in 3 different groups by protamine application, representing 0%, 50% and 100% heparin antagonization. At baseline, 5, 60, 120, 240 and 360 min, blood samples were taken to perform thromboelastometry, flow cytometry, haemolysis and general haemostasis analysis. RESULTS: Blood pressure, blood flow and blood temperature within the loops remained stable for 6 h in all groups. After 6 h, in the 100% antagonized ROTEXMEDICA heparin group, significantly increased haemolysis (148.7 ± 80 mg⋅dl-1 vs 57.5 ± 15.8 mg⋅dl-1), activated platelets (8 ± 3.8% vs 3.3 ± 0.7%), D-dimers (7376 ± 7144 ng ml-1 vs 576.2 ± 190 ng ml-1) and fulminant blood clots were detected. CONCLUSIONS: Our in vitro system is suitable for the detection of reduced anticoagulation capacity of a test drug, which was reported in vivo previously.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Heparina/farmacología , Terapia Trombolítica/métodos , Trombosis/tratamiento farmacológico , Anticoagulantes/farmacología , Hematócrito , Humanos , Recuperación de Sangre Operatoria , Tromboelastografía , Trombosis/sangre
7.
J Thorac Cardiovasc Surg ; 157(2): 591-599.e4, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414772

RESUMEN

OBJECTIVES: Shear stress from left ventricular assist devices induces von Willebrand factor degradation and platelet dysfunction, leading to nonsurgical bleeding. We characterized the hemostatic changes induced by 2 centrifugal left ventricular assist devices, the HeartMate 3 (Abbott Inc, Chicago, Ill) and the EVAHEART (Evaheart Inc, Houston, Tex), for comparison. METHODS: Whole blood from 8 healthy volunteers was used ex vivo. Blood from the same donor was used for 6 hours of circulation in a miniature mock-loop system consisting of 2 identical extracorporeal circuits to compare the following experimental settings: (1) optimal revolutions per minute (rpm) for the HeartMate 3 (n = 4; 5000 rpm) and the EVAHEART (n = 4; 2500 rpm) and (2) equal rpm (3000 rpm for the HeartMate 3 and EVAHEART, n = 4 vs n = 4). For both settings, blood flow was adjusted to 1 mock-loop filling volume per minute (HeartMate 3 = 82 mL/min, EVAHEART = 100 mL/min). A panel of coagulation markers was analyzed to investigate hemostatic changes. RESULTS: The free plasma hemoglobin concentration was significantly lower in the EVAHEART compared with the HeartMate 3 after 6 hours of mock-loop circulation under both settings (optimal: 37 ± 31 vs 503 ± 173 mg/dL, P < .0001; equal: 27 ± 4 vs 139 ± 135 mg/dL, P = .024). Loss of von Willebrand factor high-molecular-weight multimers occurred in both left ventricular assist devices and settings, but the von Willebrand factor:activity/von Willebrand factor:antigen ratio after 6 hours was significantly lower in optimal settings for the HeartMate 3 (P = .009). The thrombin-antithrombin complex level was significantly lower with the EVAHEART for both settings (P < .0001). CONCLUSIONS: The EVAHEART left ventricular assist device caused less hemolysis, resulted in lower coagulation activation, and provided better preservation of von Willebrand factor functional activity compared with the HeartMate 3 device. These findings prove that left ventricular assist device design plays a major role in minimizing blood damage during left ventricular assist device support.


Asunto(s)
Coagulación Sanguínea , Corazón Auxiliar/efectos adversos , Hemólisis , Hemorragia/etiología , Diseño de Prótesis , Función Ventricular Izquierda , Antitrombina III , Biomarcadores/sangre , Hemoglobinas/metabolismo , Hemorragia/sangre , Humanos , Ensayo de Materiales , Péptido Hidrolasas/sangre , Activación Plaquetaria , Estrés Mecánico , Factores de Tiempo , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...