Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Phys Rev Lett ; 132(17): 175002, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38728726

Strong-field quantum electrodynamics (SF QED) is a burgeoning research topic dealing with electromagnetic fields comparable to the Schwinger field (≈1.32×10^{18} V/m). While most past and proposed experiments rely on reaching this field in the rest frame of relativistic particles, the Schwinger limit could also be approached in the laboratory frame by focusing to its diffraction limit the light reflected by a plasma mirror irradiated by a multipetawatt laser. We explore the interaction between such intense light and matter with particle-in-cell simulations. We find that the collision with a relativistic electron beam would enable the study of the nonperturbative regime of SF QED, while the interaction with a solid target leads to a profusion of SF QED effects that retroact on the interaction. In both cases, relativistic attosecond pair jets with high densities are formed.

2.
Radiat Prot Dosimetry ; 200(6): 544-553, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38446413

Our work investigated the radioprotection implications associated with the possession of a collection of uraniferous minerals. Considering different scenarios, we developed (and applied to an actual collection) specific formulas for radiation doses evaluation. We discussed the shielding necessary to reduce the gamma irradiation down to the required values. A mathematical model was developed to estimate the minimum air flow rate to reduce the radon air concentration below the reference values. The radiation risks associated to the handling of single specimens was also addressed, including hand skin irradiation and shielding capabilities of surgical lead gloves. Finally, we discussed the radiation risks associated to the exhibition of a single specimen. The results, compared to the safety standards of the EU Directive 13/59, show that the exhibition of uraniferous samples with activity of a few MBq do not need specific radioprotection requirements nor for the involved personnel nor for visitors.


Occupational Exposure , Radiation Monitoring , Radiation Protection , Radiation Protection/standards , Radiation Protection/methods , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Radiation Monitoring/methods , Radiation Dosage , Minerals/analysis , Gamma Rays , Radon/analysis , Air Pollutants, Radioactive/analysis , Uranium/analysis , Models, Theoretical
3.
J Med Imaging Radiat Sci ; 55(1): 29-36, 2024 Mar.
Article En | MEDLINE | ID: mdl-38016852

INTRODUCTION: Both cone-beam computed tomography (CBCT) and surface-guided radiotherapy (SGRT) are used for breast patient positioning verification before treatment delivery. SGRT may reduce treatment time and imaging dose by potentially reduce the number of CBCT needed. The aim of this study was to compare the displacements resulting in positioning from the Image Guided Radiation Therapy (IGRT) 3D and SGRT methods and to design a clinical workflow for SGRT implementation in breast radiotherapy to establish an imaging strategy based on the data obtained. METHODS: For this study 128 breast cancer patients treated with 42.5 Gy in 16 fractions using 3D conformal radiotherapy with free breathing technique were enroled. A total of 366 CBCT images were evaluated for patient setup verification and compared with SGRT. Image registrations between planning CT images and CBCT images were performed in mutual agreement and in online mode by three health professionals. Student's paired t-test was used to compare the absolute difference in vector shift, measured in mm, for each orthogonal axis (x, y, z) between SGRT and CBCT methods. The multidisciplinary team evaluated a review of the original clinical workflow for SGRT implementation and data about patients treated with the updated workflow were reported. RESULTS: Comparison of the shifts obtained with IGRT and SGRT for each orthogonal axis (for the x-axes the average displacement was 0.9 ± 0.7 mm, y = 1.1 ± 0.8 mm and z = 1.0 ± 0.7 mm) revealed no significant statistical differences (p > 0.05). Using the updated workflow the difference between SGRT and IGRT displacements was <3 mm in 91.4 % of patients with a reduction in total treatment time of approximately 20 %, due to the reduce frequency of the CBCT images acquisition and matching. CONCLUSIONS: This study has shown that IGRT and SGRT agree in positioning patients with breast cancer within a millimetre tolerance. SGRT can be used for patient positioning, with the advantages of reducing radiation exposure and shorter overall treatment time.


Breast Neoplasms , Radiotherapy, Intensity-Modulated , Spiral Cone-Beam Computed Tomography , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
4.
Curr Radiopharm ; 16(4): 253-268, 2023.
Article En | MEDLINE | ID: mdl-37190802

BACKGROUND: Despite substantial research, the mechanisms behind stress Tako-tsubo cardiomyopathy (TTC) remain rather elusive. OBJECTIVE: The purpose of this paper was to provide a detailed review of the mainstream factors underlying the pathophysiology of TTC, highlighting the novel contributions of molecular pathology and in-vivo molecular imaging. METHODS: A careful literature review selected all papers discussing TTC, specifically those providing novel insights from myocardial pathology and cardiac molecular imaging. RESULTS: Results concerning myocardial pathology, defect extension, sites and relationships between functional parameters underline the existence of a causal relationship between a determinant (e.g., the release of catecholamines induced by stress) and an outcome for TTC, which is not limited to a reversible contractile cardiomyopathy, but it includes reversible changes in myocardial perfusion and a long-lasting residual deficit in sympathetic function. Besides, they reinforce the hypothesis that sympathetic nerves may exert a complex control on cardiac contractile function, which is likely to be direct or indirect through metabolism and microvascular perfusion changes during anaerobic and aerobic conditions. CONCLUSION: TTC is characterized by acute transient left ventricular systolic dysfunction, which can be challenging to distinguish from myocardial infarction at presentation. Catecholamineinduced myocardial injury is the most established theory, but other factors, including myocardial metabolism and perfusion, should be considered of utmost importance. Each effort to clarify the numerous pathways and emerging abnormalities may provide novel approaches to treat the acute episode, avoid recurrences, and prevent major adverse cardiovascular events.


Myocardial Infarction , Takotsubo Cardiomyopathy , Humans , Molecular Imaging , Myocardium , Radiopharmaceuticals , Takotsubo Cardiomyopathy/diagnostic imaging
5.
Radiat Prot Dosimetry ; 198(3): 175-187, 2022 Mar 16.
Article En | MEDLINE | ID: mdl-35211752

The activity estimation of hand-size specimens of uraniferous minerals is not a trivial issue due to the manipulation difficulty caused by the emitted ionising radiation and the dependence of radiometric quantities from several parameters. Sample modelling requires approximations, leading to large uncertainty in the evaluation of the activity. In this work, a new procedure to evaluate uraniferous specimens activity, including a detailed description of measured parameters, the instrumentation and the mathematical formulation of the process, is presented. The proposed methodology takes into consideration sample size, ore composition and measured radiation. The procedure was used to measure the activity of a group of uraniferous mineral specimens belonging to Natural History Museum of the University of Florence, Italy. The experimental set-up was designed to reduce the measurement uncertainty. The aim of this work is to propose a methodology that can be easily applied to the specimens manipulation, conservation and exhibition.


Minerals , Museums , Italy , Uncertainty
6.
Sci Rep ; 11(1): 15619, 2021 08 02.
Article En | MEDLINE | ID: mdl-34341411

Triage is crucial for patient's management and estimation of the required intensive care unit (ICU) beds is fundamental for health systems during the COVID-19 pandemic. We assessed whether chest computed tomography (CT) of COVID-19 pneumonia has an incremental role in predicting patient's admission to ICU. We performed volumetric and texture analysis of the areas of the affected lung in CT of 115 outpatients with COVID-19 infection presenting to the emergency room with dyspnea and unresponsive hypoxyemia. Admission blood laboratory including lymphocyte count, serum lactate dehydrogenase, D-dimer and C-reactive protein and the ratio between the arterial partial pressure of oxygen and inspired oxygen were collected. By calculating the areas under the receiver-operating characteristic curves (AUC), we compared the performance of blood laboratory-arterial gas analyses features alone and combined with the CT features in two hybrid models (Hybrid radiological and Hybrid radiomics)for predicting ICU admission. Following a machine learning approach, 63 patients were allocated to the training and 52 to the validation set. Twenty-nine (25%) of patients were admitted to ICU. The Hybrid radiological model comprising the lung %consolidation performed significantly (p = 0.04) better in predicting ICU admission in the validation (AUC = 0.82; 95% confidence interval 0.73-0.97) set than the blood laboratory-arterial gas analyses features alone (AUC = 0.71; 95% confidence interval 0.56-0.86). A risk calculator for ICU admission was derived and is available at: https://github.com/cgplab/covidapp . The volume of the consolidated lung in CT of patients with COVID-19 pneumonia has a mild but significant incremental value in predicting ICU admission.


COVID-19 , Intensive Care Units , Models, Biological , Pandemics , Patient Admission , SARS-CoV-2/metabolism , Tomography, X-Ray Computed , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/epidemiology , COVID-19/therapy , Female , Humans , Male , Middle Aged , Oxygen/blood , Predictive Value of Tests
7.
Phys Med ; 85: 98-106, 2021 May.
Article En | MEDLINE | ID: mdl-33991807

PURPOSE: The purpose of this multicenter phantom study was to exploit an innovative approach, based on an extensive acquisition protocol and unsupervised clustering analysis, in order to assess any potential bias in apparent diffusion coefficient (ADC) estimation due to different scanner characteristics. Moreover, we aimed at assessing, for the first time, any effect of acquisition plan/phase encoding direction on ADC estimation. METHODS: Water phantom acquisitions were carried out on 39 scanners. DWI acquisitions (b-value = 0-200-400-600-800-1000 s/mm2) with different acquisition plans (axial, coronal, sagittal) and phase encoding directions (anterior/posterior and right/left, for the axial acquisition plan), for 3 orthogonal diffusion weighting gradient directions, were performed. For each acquisition setup, ADC values were measured in-center and off-center (6 different positions), resulting in an entire dataset of 84 × 39 = 3276 ADC values. Spatial uniformity of ADC maps was assessed by means of the percentage difference between off-center and in-center ADC values (Δ). RESULTS: No significant dependence of in-center ADC values on acquisition plan/phase encoding direction was found. Ward unsupervised clustering analysis showed 3 distinct clusters of scanners and an association between Δ-values and manufacturer/model, whereas no association between Δ-values and maximum gradient strength, slew rate or static magnetic field strength was revealed. Several acquisition setups showed significant differences among groups, indicating the introduction of different biases in ADC estimation. CONCLUSIONS: Unsupervised clustering analysis of DWI data, obtained from several scanners using an extensive acquisition protocol, allows to reveal an association between measured ADC values and manufacturer/model of scanner, as well as to identify suboptimal DWI acquisition setups for accurate ADC estimation.


Diffusion Magnetic Resonance Imaging , Cluster Analysis , Diffusion , Phantoms, Imaging , Reproducibility of Results
8.
Phys Med ; 60: 127-131, 2019 Apr.
Article En | MEDLINE | ID: mdl-31000072

PURPOSE: To perform a multi-centre survey on the eye lens equivalent dose absorbed by primary interventionalist during catheterization procedures, using a personal dosimeter placed close to the eye lens. METHODS: 15 different cardiologists working in 3 different centers, for a total of 5 operating rooms were enrolled. All of them were provided with a single thermoluminescent dosimeter positioned on the inner side of the temples of eyeglasses. The dose monitoring, performed on a two-months basis, started in 2016 and is still running. All dose measurements were performed by a ISO 17025 standard accredited dosimetry service thus providing certified uncertainties as well. Correlation of eye lens and wrist dose with KAP was also investigated. RESULTS: A total number of 101 eye lens measurements were performed. Annual eye lens dose estimation was obtained for all 15 surgeons (mean, mode, range, standard deviation: 10.8, 8, 4.9-27.3, 5.6  mSv, respectively). Uncertainties on annual eye lens dose estimations ranged between 10% and 20%. No significant correlation was found between eye lens dose and KAP. CONCLUSIONS: Cardiologists involved in catheterization procedures may receive annual eye lens doses close to the ICRP 118 dose limit and thus individual monitoring with a dedicated dosimeter should be carried out. Uncertainty assessment play a relevant role in eye lens equivalent dose estimation to ensure not to exceed dose limit.


Catheterization , Lens, Crystalline , Occupational Exposure , Radiation Exposure , Radiometry/instrumentation , Surgeons , Cardiologists , Catheterization/adverse effects , Equipment Design , Eyeglasses , Humans , Lens, Crystalline/radiation effects , Radiation Protection , Radiometry/methods , Wrist
9.
Phys Med ; 57: 245-250, 2019 Jan.
Article En | MEDLINE | ID: mdl-30573352

Pre and post-operative exposure levels of medical staff and people from public in intra-operative Ru-106 ophthalmic brachytherapy are reported, together with attenuation properties of selected shielding materials. In particular radiation exposure of workers during plaque transportation and during medical assistance of implanted plaque patient was measured. Taking into account dose rates and considering standard assistance procedure of hospitalized patients, the exposure of medical staff and people of the public were evaluated for a given workload. In order to provide tools to optimize radiation protection, considering social and economic aspects due to possible hospital discharge or hospital stay, the attenuation properties of common shielding materials (lead, concrete, red brick, PMMA and gypsum) were measured, considering both narrow and broad beam setups. The eye was simulated using a water equivalent phantom and plaque was fixed on it. All measurements were performed with calibrated survey meters. Results were compared with numerical simulation of bremsstrahlung X-ray radiation spectra emitted from patient eye. Exposure levels measured at 1 m distance in front of the implanted eye are 0.05 µSv/h/MBq, at 10 cm from patient head, 0.44 µSv/h/MBq (plaque side), 0.4 µSv/h/MBq (front), 0.25 µSv/h/MBq (lateral, opposed to plaque), 0.2 µSv/h/MBq (back). Average exposure levels, under conservative assumptions, for medical staff is 17 µSv/patient and less than 23 µSv/patient for careers and comforters. TVLs in lead and concrete are about 1.6 cm and 11.5 cm respectively.


Brachytherapy/adverse effects , Brachytherapy/instrumentation , Eye Neoplasms/radiotherapy , Eye Neoplasms/surgery , Preoperative Period , Radiation Protection/instrumentation , Ruthenium Radioisotopes/therapeutic use , Postoperative Period , Ruthenium Radioisotopes/adverse effects
10.
Phys Med ; 55: 135-141, 2018 Nov.
Article En | MEDLINE | ID: mdl-30342982

PURPOSE: To propose an MRI quality assurance procedure that can be used for routine controls and multi-centre comparison of different MR-scanners for quantitative diffusion-weighted imaging (DWI). MATERIALS AND METHODS: 44 MR-scanners with different field strengths (1 T, 1.5 T and 3 T) were included in the study. DWI acquisitions (b-value range 0-1000 s/mm2), with three different orthogonal diffusion gradient directions, were performed for each MR-scanner. All DWI acquisitions were performed by using a standard spherical plastic doped water phantom. Phantom solution ADC value and its dependence with temperature was measured using a DOSY sequence on a 600 MHz NMR spectrometer. Apparent diffusion coefficient (ADC) along each diffusion gradient direction and mean ADC were estimated, both at magnet isocentre and in six different position 50 mm away from isocentre, along positive and negative AP, RL and HF directions. RESULTS: A good agreement was found between the nominal and measured mean ADC at isocentre: more than 90% of mean ADC measurements were within 5% from the nominal value, and the highest deviation was 11.3%. Away from isocentre, the effect of the diffusion gradient direction on ADC estimation was larger than 5% in 47% of included scanners and a spatial non uniformity larger than 5% was reported in 13% of centres. CONCLUSION: ADC accuracy and spatial uniformity can vary appreciably depending on MR scanner model, sequence implementation (i.e. gradient diffusion direction) and hardware characteristics. The DWI quality assurance protocol proposed in this study can be employed in order to assess the accuracy and spatial uniformity of estimated ADC values, in single- as well as multi-centre studies.


Diffusion Magnetic Resonance Imaging/instrumentation , Diffusion , Phantoms, Imaging , Quality Control
11.
Phys Med ; 54: 49-55, 2018 Oct.
Article En | MEDLINE | ID: mdl-30337010

PURPOSE: The aim of this study was to propose and validate across various clinical scanner systems a straightforward multiparametric quality assurance procedure for proton magnetic resonance spectroscopy (MRS). METHODS: Eighteen clinical 1.5 T and 3 T scanner systems for MRS, from 16 centres and 3 different manufacturers, were enrolled in the study. A standard spherical water phantom was employed by all centres. The acquisition protocol included 3 sets of single (isotropic) voxel (size 20 mm) PRESS acquisitions with unsuppressed water signal and acquisition voxel position at isocenter as well as off-center, repeated 4/5 times within approximately 2 months. Water peak linewidth (LW) and area under the water peak (AP) were estimated. RESULTS: LW values [mean (standard deviation)] were 1.4 (1.0) Hz and 0.8 (0.3) Hz for 3 T and 1.5 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficient of variation of LW and AP for different spatial positions of acquisition voxel were 43% (20%) and 11% (11%), respectively. The mean (standard deviation) phantom T2values were 1145 (50) ms and 1010 (95) ms for 1.5 T and 3 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficients of variation for repeated measurements of LW, AP and T2 were 25% (20%), 10% (14%) and 5% (2%), respectively. CONCLUSIONS: We proposed a straightforward multiparametric and not time consuming quality control protocol for MRS, which can be included in routine and periodic quality assurance procedures. The protocol has been validated and proven to be feasible in a multicentre comparison study of a fairly large number of clinical 1.5 T and 3 T scanner systems.


Proton Magnetic Resonance Spectroscopy/standards , Phantoms, Imaging , Quality Control
12.
Sci Rep ; 8(1): 3834, 2018 Mar 01.
Article En | MEDLINE | ID: mdl-29497130

Near-critical plasmas irradiated at ultra-high laser intensities (I > 1018W/cm2) allow to improve the performances of laser-driven particle and radiation sources and to explore scenarios of great astrophysical interest. Near-critical plasmas with controlled properties can be obtained with nanostructured low-density materials. By means of 3D Particle-In-Cell simulations, we investigate how realistic nanostructures influence the interaction of an ultra-intense laser with a plasma having a near-critical average electron density. We find that the presence of a nanostructure strongly reduces the effect of pulse polarization and enhances the energy absorbed by the ion population, while generally leading to a significant decrease of the electron temperature with respect to a homogeneous near-critical plasma. We also observe an effect of the nanostructure morphology. These results are relevant both for a fundamental understanding and for the foreseen applications of laser-plasma interaction in the near-critical regime.

13.
Strahlenther Onkol ; 194(3): 243-254, 2018 03.
Article En | MEDLINE | ID: mdl-29255923

PURPOSE: This study aimed to test the sensitivity of a transmission detector for online dose monitoring of intensity-modulated radiation therapy (IMRT) for detecting small delivery errors. Furthermore, the correlation of changes in detector output induced by small delivery errors with other metrics commonly employed to quantify the deviations between calculated and delivered dose distributions was investigated. METHODS: Transmission detector measurements were performed at three institutions. Seven types of errors were induced in nine clinical step-and-shoot (S&S) IMRT plans by modifying the number of monitor units (MU) and introducing small deviations in leaf positions. Signal reproducibility was investigated for short- and long-term stability. Calculated dose distributions were compared in terms of γ passing rates and dose-volume histogram (DVH) metrics (e.g., Dmean, Dx%, Vx%). The correlation between detector signal variations, γ passing rates, and DVH parameters was investigated. RESULTS: Both short- and long-term reproducibility was within 1%. Dose variations down to 1 MU (∆signal 1.1 ± 0.4%) as well as changes in field size and positions down to 1 mm (∆signal 2.6 ± 1.0%) were detected, thus indicating high error-detection sensitivity. A moderate correlation of detector signal was observed with γ passing rates (R2 = 0.57-0.70), while a good correlation was observed with DVH metrics (R2 = 0.75-0.98). CONCLUSION: The detector is capable of detecting small delivery errors in MU and leaf positions, and is thus a highly sensitive dose monitoring device for S&S IMRT for clinical practice. The results of this study indicate a good correlation of detector signal with DVH metrics; therefore, clinical action levels can be defined based on the presented data.


Computer Systems , Radiation Monitoring/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Setup Errors/prevention & control , Radiotherapy, Intensity-Modulated/instrumentation , Humans , Organs at Risk , Quality Assurance, Health Care , Radiation Monitoring/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Sensitivity and Specificity , Statistics as Topic
14.
J Magn Reson Imaging ; 43(1): 213-9, 2016 Jan.
Article En | MEDLINE | ID: mdl-26013043

PURPOSE: To propose a magnetic resonance imaging (MRI) quality assurance procedure that can be used for multicenter comparison of different MR scanners for quantitative diffusion-weighted imaging (DWI). MATERIALS AND METHODS: Twenty-six centers (35 MR scanners with field strengths: 1T, 1.5T, and 3T) were enrolled in the study. Two different DWI acquisition series (b-value ranges 0-1000 and 0-3000 s/mm(2) , respectively) were performed for each MR scanner. All DWI acquisitions were performed by using a cylindrical doped water phantom. Mean apparent diffusion coefficient (ADC) values as well as ADC values along each of the three main orthogonal directions of the diffusion gradients (x, y, and z) were calculated. Short-term repeatability of ADC measurement was evaluated for 26 MR scanners. RESULTS: A good agreement was found between the nominal and measured mean ADC over all the centers. More than 80% of mean ADC measurements were within 5% from the nominal value, and the highest deviation and overall standard deviation were 9.3% and 3.5%, respectively. Short-term repeatability of ADC measurement was found <2.5% for all MR scanners. CONCLUSION: A specific and widely accepted protocol for quality controls in DWI is still lacking. The DWI quality assurance protocol proposed in this study can be applied in order to assess the reliability of DWI-derived indices before tackling single- as well as multicenter studies.


Diffusion Magnetic Resonance Imaging/instrumentation , Diffusion Magnetic Resonance Imaging/standards , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/standards , Quality Assurance, Health Care/standards , Diffusion Magnetic Resonance Imaging/methods , Equipment Design , Equipment Failure Analysis , Image Interpretation, Computer-Assisted/methods , Italy , Phantoms, Imaging , Quality Assurance, Health Care/methods , Reproducibility of Results , Sensitivity and Specificity
...