Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 81(1): 164-9, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20846507

RESUMEN

Human serum butyrylcholinesterase (Hu BChE) is currently under advanced development as a bioscavenger for the prophylaxis of organophosphorus (OP) nerve agent toxicity in humans. It is estimated that a dose of 200mg will be required to protect a human against 2×LD(50) of soman. To provide data for initiating an investigational new drug application for the use of this enzyme as a bioscavenger in humans, we purified enzyme from Cohn fraction IV-4 paste and initiated safety and efficacy evaluations in mice, guinea pigs, and non-human primates. In mice, we demonstrated that a single dose of enzyme that is 30 times the therapeutic dose circulated in blood for at least four days and did not cause any clinical pathology in these animals. In this study, we report the results of safety and efficacy evaluations conducted in guinea pigs. Various doses of Hu BChE delivered by i.m. injections peaked at ∼24h and had a mean residence time of 78-103h. Hu BChE did not exhibit any toxicity in guinea pigs as measured by general observation, serum chemistry, hematology, and gross and histological tissue changes. Efficacy evaluations showed that Hu BChE protected guinea pigs from an exposure of 5.5×LD(50) of soman or 8×LD(50) of VX. These results provide convincing data for the development of Hu BChE as a bioscavenger that can protect humans against all OP nerve agents.


Asunto(s)
Antídotos/farmacología , Butirilcolinesterasa/farmacología , Sustancias para la Guerra Química/toxicidad , Compuestos Organotiofosforados/toxicidad , Soman/toxicidad , Animales , Antídotos/farmacocinética , Butirilcolinesterasa/farmacocinética , Relación Dosis-Respuesta a Droga , Femenino , Cobayas , Semivida , Humanos , Masculino
2.
J Med Chem ; 48(6): 1919-29, 2005 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15771436

RESUMEN

Tacrine heterobivalent ligands were designed as novel and reversible inhibitors of cholinesterases. On the basis of the investigation of the active site gorge topology of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) and by using flexible docking procedures, molecular modeling studies formulated the hypothesis of extra interaction sites in the active gorge of hBuChE, namely, a mid-gorge interaction site and a peripheral interaction site. The design strategy led to novel BuChE inhibitors, balancing potency and selectivity. Among the compounds identified, the heterobivalent ligand 4m, containing an amide nitrogen and a sulfur atom at the 8-membered tether level, is one of the most potent and selective BuChE inhibitors described to date. The novel inhibitors, bearing postulated key features, validated the hypothesis of the presence of extra interaction sites within the hBuChE active site gorge.


Asunto(s)
Acridinas/síntesis química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/metabolismo , Acridinas/química , Acridinas/farmacología , Sitios de Unión , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Humanos , Técnicas In Vitro , Ligandos , Modelos Moleculares , Sondas Moleculares , Relación Estructura-Actividad
3.
Eur J Biochem ; 270(22): 4447-58, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14622273

RESUMEN

E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Aminoácidos Aromáticos/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Indanos/metabolismo , Piperidinas/metabolismo , Acetilcolinesterasa/genética , Animales , Sitios de Unión , Butirilcolinesterasa/genética , Bovinos , Inhibidores de la Colinesterasa/farmacología , Donepezilo , Caballos , Humanos , Indanos/farmacología , Cinética , Ratones , Modelos Moleculares , Mutación , Piperidinas/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA