Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Science ; 381(6656): 436-443, 2023 07 28.
Article En | MEDLINE | ID: mdl-37499029

Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.


Gene Editing , Hematopoietic Stem Cells , Proto-Oncogene Proteins c-kit , RNA, Messenger , Gene Editing/methods , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-kit/genetics , RNA, Messenger/genetics , Animals , Humans , Mice
2.
Chem Pharm Bull (Tokyo) ; 66(8): 773-778, 2018.
Article En | MEDLINE | ID: mdl-30068796

The ability of tumors to escape from immune destruction is attributed to the protein-protein interaction between programmed cell death protein 1 (PD1) and programmed cell death ligand 1 (PDL1) proteins expressed by immune T cells and cancer cells, respectively. Therefore, pharmacological inhibition of the PD1-PDL1 interaction presents an important therapeutic target against a variety of tumors expressing PDL1 on their cell surface. Recently, five antibodies have been approved and several are in clinical trials against the PD1-PDL1 protein-protein interaction target. In contrast, there are very few reports of small-molecule inhibitors of PD1-PDL1 interaction, and most of them have relatively modest or weak inhibition activities, emphasizing the difficulty in designing small-molecule inhibitors against this challenging target. Therefore, we focused our attention on macrocycles that are known to exhibit target activity comparable to large macromolecules despite having molecular weights closer to small, drug-like molecules. In this context, our present study led to the identification of several macrocyclic compounds from the ansamycin antibiotics class to be inhibitors of PD1-PDL1 interaction. Importantly, one of these macrocyclic antibiotics, Rifabutin, showed an IC50 value of ca. 25 µM. This is remarkable considering it has a relatively low molecular weight and still is capable of inhibiting PD1-PDL1 protein-protein interaction whose binding interface spans over ca. 1970 Å2. Thus, these macrocycles may serve as guiding points for discovery and optimization of more potent, selective small-molecule inhibitors of PD1-PDL1 interaction, one of the most promising therapeutic targets against cancer.


Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Rifabutin/analogs & derivatives , Rifabutin/chemistry , B7-H1 Antigen/chemistry , Drug Discovery , Humans , Models, Molecular , Programmed Cell Death 1 Receptor/chemistry , Protein Binding
...