Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35201268

RESUMEN

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Asunto(s)
Circulación Cerebrovascular/fisiología , Microglía/fisiología , Acoplamiento Neurovascular/fisiología , Receptores Purinérgicos/fisiología , Adulto , Anciano , Animales , Encéfalo/fisiología , Señalización del Calcio/fisiología , Enfermedades de las Arterias Carótidas/fisiopatología , Potenciales Evocados/fisiología , Femenino , Humanos , Hipercapnia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Purinérgicos P2Y12/fisiología , Vasodilatación/fisiología , Vibrisas/inervación
2.
PLoS Biol ; 20(1): e3001526, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085235

RESUMEN

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Asunto(s)
Edema Encefálico/genética , Lesiones Encefálicas/genética , Microglía/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Accidente Cerebrovascular/genética , Animales , Edema Encefálico/inducido químicamente , Edema Encefálico/metabolismo , Edema Encefálico/patología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Bumetanida/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación , Inyecciones Intraventriculares , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Fenotipo , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
3.
Science ; 367(6477): 528-537, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31831638

RESUMEN

Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.


Asunto(s)
Lesiones Encefálicas/inmunología , Encéfalo/inmunología , Uniones Intercelulares/inmunología , Microglía/inmunología , Neuronas/inmunología , Receptores Purinérgicos P2Y12/fisiología , Animales , Encéfalo/ultraestructura , Lesiones Encefálicas/patología , Calcio , Comunicación Celular/inmunología , Células HEK293 , Humanos , Ratones , Mitocondrias/inmunología , Canales de Potasio Shab/genética , Canales de Potasio Shab/fisiología , Transducción de Señal
4.
Br J Cancer ; 120(2): 207-217, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518816

RESUMEN

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Asunto(s)
Alarminas/genética , Carcinoma Epitelial de Ovario/genética , ADN Mitocondrial/genética , Trampas Extracelulares/genética , Anciano , Ascitis/genética , Ascitis/patología , Plaquetas/metabolismo , Carcinoma Epitelial de Ovario/patología , Trampas Extracelulares/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Elastasa de Leucocito/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neutrófilos/metabolismo , Neutrófilos/patología , Supervivencia sin Progresión , Microambiente Tumoral/genética
5.
Acta Neuropathol ; 136(3): 461-482, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30027450

RESUMEN

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours. Selective elimination of microglia results in a marked increase in the spread of infection and egress of viral particles into the brain parenchyma, which are associated with diverse neurological symptoms. Microglia recruitment and clearance of infected cells require cell-autonomous P2Y12 signalling in microglia, triggered by nucleotides released from affected neurons. In turn, we identify microglia as key contributors to monocyte recruitment into the inflamed brain, which process is largely independent of P2Y12. P2Y12-positive microglia are also recruited to infected neurons in the human brain during viral encephalitis and both microglial responses and leukocyte numbers correlate with the severity of infection. Thus, our data identify a key role for microglial P2Y12 in defence against neurotropic viruses, whilst P2Y12-independent actions of microglia may contribute to neuroinflammation by facilitating monocyte recruitment to the sites of infection.


Asunto(s)
Encéfalo/metabolismo , Infecciones por Herpesviridae/metabolismo , Microglía/metabolismo , Monocitos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/virología , Ratones , Microglía/virología , Neuronas/metabolismo , Neuronas/virología
6.
Biochim Biophys Acta Bioenerg ; 1859(3): 201-214, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29273412

RESUMEN

Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.


Asunto(s)
Metabolismo Energético/fisiología , Glucosa/metabolismo , Glutamina/metabolismo , Lactatos/metabolismo , Microglía/metabolismo , Piruvatos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Femenino , Glucosa/farmacología , Glutamina/farmacología , Glucólisis/efectos de los fármacos , Lactatos/farmacología , Masculino , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Piruvatos/farmacología
7.
Nat Commun ; 7: 11499, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27139776

RESUMEN

Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reversed by microglial repopulation. Microglia-mediated protection includes reduction of excitotoxic injury, since an absence of microglia leads to dysregulated neuronal calcium responses, calcium overload and increased neuronal death. Furthermore, the incidence of spreading depolarization (SD) is markedly reduced in the absence of microglia. Thus, microglia are involved in changes in neuronal network activity and SD after brain injury in vivo that could have important implications for common brain diseases.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Microglía/fisiología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Isquemia Encefálica/fisiopatología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Neuroprotección/fisiología , Imagen de Lapso de Tiempo/métodos
8.
Stem Cells Dev ; 23(21): 2600-12, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24870815

RESUMEN

Mesenchymal stems or stromal cells (MSCs) are rare multipotent cells with potent regenerative and immunomodulatory properties. Microglial cells (MGs) are specialized tissue macrophages of the central nervous system (CNS) that continuously survey their environment with highly motile extensions. Recently, several studies have shown that MSCs are capable of reprogramming microglia into an "M2-like" phenotype characterized by increased phagocytic activity and upregulated expression of anti-inflammatory mediators in vitro. However, the precise polarization states of microglia in the presence of MSCs under physiological or under inflammatory conditions remain largely unknown. In this study, we found that MSCs induce a mixed microglia phenotype defined as Arg1-high, CD86-high, CD206-high, IL-10-high, PGE2-high, MCP-1/CCL2-high, IL-1ß-moderate, NALP-3-low, and TNF-α-low cells. These MSC-elicited MGs have high phagocytic activity and antigen-presenting ability. Lipopolysaccharide is able to shape this microglia phenotype quantitatively, but not qualitatively in the presence of MSCs. This unique polarization state resembles a novel regulatory microglia phenotype, which might contribute to the resolution of inflammation and to tissue repair in the CNS.


Asunto(s)
Células Presentadoras de Antígenos/citología , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Microglía/citología , Animales , Animales Recién Nacidos , Células Presentadoras de Antígenos/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Expresión Génica , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microscopía Confocal , Fagocitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Linfocitos T/citología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA