Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2316867121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657051

RESUMEN

The term defect tolerance (DT) is used often to rationalize the exceptional optoelectronic properties of halide perovskites (HaPs) and their devices. Even though DT lacked direct experimental evidence, it became a "fact" in the field. DT in semiconductors implies that structural defects do not translate to electrical and optical effects (e.g., due to charge trapping), associated with such defects. We present pioneering direct experimental evidence for DT in Pb-HaPs by comparing the structural quality of 2-dimensional (2D), 2D-3D, and 3D Pb-iodide HaP crystals with their optoelectronic characteristics using high-sensitivity methods. Importantly, we get information from the materials' bulk because we sample at least a few hundred nanometers, up to several micrometers, from the sample's surface, which allows for assessing intrinsic bulk (and not only surface-) properties of HaPs. The results point to DT in 3D, 2D-3D, and 2D Pb-HaPs. Overall, our data provide an experimental basis to rationalize DT in Pb-HaPs. These experiments and findings will help the search for and design of materials with real DT.

2.
Adv Mater ; 36(8): e2306996, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031346

RESUMEN

Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.

3.
Chem Sci ; 15(1): 336-348, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131097

RESUMEN

Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.

4.
ACS Nano ; 17(21): 20962-20967, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37871004

RESUMEN

Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.

5.
Chemistry ; 29(54): e202301825, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37334917

RESUMEN

We demonstrate here how nitrate salts of bivalent copper, nickel, cobalt, and manganese, along with an achiral organic ligand, assemble into various structures such as symmetrical double-decker flowers, smooth elongated hexagonal bipyramids, and hexagonal prisms. Large morphological changes occur in these structures because of different metal cations, although they maintain isomorphous hexagonal crystallographic structures. Metal cations with stronger coordination to ligands (Cu and Ni) tend to form uniform crystals with unusual shapes, whereas weaker coordinating metal cations (Mn and Co) produce crystals with more regular hexagonal morphologies. The unusual flower-like crystals formed with copper nitrate have two pairs of six symmetrical petals with hexagonal convex centers. The texture of the petals indicates dendritic growth. Two different types of morphologies were formed by using different copper nitrate-to-ligand ratios. An excess of the metal salt results in uniform and hexagonal crystals having a narrow size distribution, whereas the use of an excess of ligand results in double-decker morphologies. Mechanistically, an intermediate structure was observed with slightly concave facets and a domed center. Such structures most likely play a key role in the formation of double-decker crystals that can be formed by fusion processes. The coordination chemistry results in isostructural chiral frameworks consisting of two types of continuous helical channels. Four pyridine units from four separate ligands are coordinated to the metal center in a plane having a chiral (propeller-type) arrangement. The individual double-decker flower crystals are homochiral and a batch consists of crystals having both handedness.

6.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146391

RESUMEN

A protocol for successfully depositing [001] textured, 2−3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field.

7.
J Magn Reson ; 336: 107143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085928

RESUMEN

The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.


Asunto(s)
Electrones , Compuestos Férricos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Temperatura
8.
ACS Omega ; 7(51): 47747-47754, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591209

RESUMEN

The spontaneous gelation of poly(4-vinyl pyridine)/pyridine solution produces materials with conductive properties that are suitable for various energy conversion technologies. The gel is a thermoelectric material with a conductivity of 2.2-5.0 × 10-6 S m-1 and dielectric constant ε = 11.3. On the molecular scale, the gel contains various types of hydrogen bonding, which are formed via self-protonation of the pyridine side chains. Our measurements and calculations revealed that the gelation process produces bias-dependent polymer complexes: quasi-symmetric, strongly hydrogen-bonded species, and weakly bound protonated structures. Under an applied DC bias, the gelled complexes differ in their capacitance/conductive characteristics. In this work, we exploited the bias-responsive characteristics of poly(4-vinyl pyridine) gelled complexes to develop a prototype of a thermal energy harvesting device. The measured device efficiency is S = ΔV/ΔT = 0.18 mV/K within the temperature range of 296-360 K. Investigation of the mechanism underlying the conversion of thermal energy into electric charge showed that the heat-controlled proton diffusion (the Soret effect) produces thermogalvanic redox reactions of hydrogen ions on the anode. The charge can be stored in an external capacitor for heat energy harvesting. These results advance our understanding of the molecular mechanisms underlying thermal energy conversion in the poly(4-vinyl pyridine)/pyridine gel. A device prototype, enabling thermal energy harvesting, successfully demonstrates a simple path toward the development of inexpensive, low-energy thermoelectric generators.

9.
Polymers (Basel) ; 13(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771407

RESUMEN

Poly(L-lactic acid) (PLLA) is a biocompatible, biodegradable, and semi-crystalline polymer with numerous applications including food packaging, medical implants, stents, tissue engineering scaffolds, etc. Hydroxyapatite (HA) is the major component of natural bone. Conceptually, combining PLLA and HA could produce a bioceramic suitable for implants and bone repair. However, this nanocomposite suffers from poor mechanical behavior under tensile strain. In this study, films of PLLA and HA were prepared with small amounts of nontoxic WS2 nanotubes (INT-WS2). The structural aspects of the films were investigated via electron microscopy, X-ray diffraction, Raman microscopy, and infrared absorption spectroscopy. The mechanical properties were evaluated via tensile measurements, micro-hardness tests, and nanoindentation. The thermal properties were investigated via differential scanning calorimetry. The composite films exhibited improved mechanical and thermal properties compared to the films prepared from the PLLA and HA alone, which is advantageous for medical applications.

10.
ACS Nano ; 15(9): 14643-14652, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34516094

RESUMEN

We demonstrate the solvent-free amorphous-to-cocrystalline transformations of nanoscale molecular films. Exposing amorphous films to vapors of a haloarene results in the formation of a cocrystalline coating. This transformation proceeds by gradual strengthening of halogen-bonding interactions as a result of the crystallization process. The gas-solid diffusion mechanism involves formation of an amorphous metastable phase prior to crystallization of the films. In situ optical microscopy shows mass transport during this process, which is confirmed by cross-section analysis of the final structures using focused ion beam milling combined with scanning electron microscopy. Nanomechanical measurements show that the rigidity of the amorphous films influences the crystallization process. This surface transformation results in molecular arrangements that are not readily obtained through other means. Cocrystals grown in solution crystallize in a monoclinic centrosymmetric space group, whereas the on-surface halogen-bonded assembly crystallizes into a noncentrosymmetric material with a bulk second-order nonlinear optical response.

11.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446565

RESUMEN

Asymmetric two-dimensional (2D) structures (often named Janus), like SeMoS and their nanotubes, have tremendous scope in material chemistry, nanophotonics, and nanoelectronics due to a lack of inversion symmetry and time-reversal symmetry. The synthesis of these structures is fundamentally difficult owing to the entropy-driven randomized distribution of chalcogens. Indeed, no Janus nanotubes were experimentally prepared, so far. Serendipitously, a family of asymmetric misfit layer superstructures (tubes and flakes), including LaX-TaX2 (where X = S/Se), were synthesized by high-temperature chemical vapor transport reaction in which the Se binds exclusively to the Ta atoms and La binds to S atoms rather than the anticipated random distribution. With increasing Se concentration, the LaS-TaX2 misfit structure gradually transformed into a new LaS-TaSe2-TaSe2 superstructure. No misfit structures were found for xSe = 1. These counterintuitive results shed light on the chemical selectivity and stability of misfit compounds and 2D alloys, in general. The lack of inversion symmetry in these asymmetric compounds induces very large local electrical dipoles. The loss of inversion and time-reversal symmetries in the chiral nanotubes offers intriguing physical observations and applications.

12.
Angew Chem Int Ed Engl ; 60(33): 18256-18264, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34115416

RESUMEN

We demonstrate here a unique metallo-organic material where the appearance and the internal crystal structure are in contradiction. The egg-shaped (ovoid) crystals have a brain-like texture. Although these micro-sized crystals are monodispersed; like fingerprints their grainy surfaces are never exactly alike. Remarkably, our X-ray and electron diffraction studies unexpectedly revealed that these structures are single-crystals comprising a continuous coordination network of two differently shaped homochiral channels. By using the same building blocks under different reaction conditions, a rare series of crystals have been obtained that are uniquely rounded in their shape. In stark contrast to the brain-like crystals, these isostructural and monodispersed crystals have a comparatively smooth appearance. The sizes of these crystals vary by several orders of magnitude.

13.
ACS Omega ; 5(50): 32490-32497, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33376886

RESUMEN

Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.

14.
J Am Chem Soc ; 142(33): 14210-14221, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32650634

RESUMEN

We demonstrate the formation of uniform and oriented metal-organic frameworks using a combination of anion effects and surface chemistry. Subtle but significant morphological changes result from the nature of the coordinative counteranion of the following metal salts: NiX2 with X = Br-, Cl-, NO3-, and OAc-. Crystals could be obtained in solution or by template surface growth. The latter results in truncated crystals that resemble a half structure of the solution-grown ones. The oriented surface-bound metal-organic frameworks (sMOFs) are obtained via a one-step solvothermal approach rather than in a layer-by-layer approach. The MOFs are grown on Si/SiOx substrates modified with an organic monolayer or on glass substrates covered with a transparent conductive oxide (TCO). Regardless of the different morphologies, the crystallographic packing is nearly identical and is not affected by the type of anion or by solution versus the surface chemistry. A propeller-type arrangement of the nonchiral ligands around the metal center affords a chiral structure with two geometrically different helical channels in a 2:1 ratio with the same handedness. To demonstrate the accessibility and porosity of the macroscopically oriented channels, a chromophore (resorufin sodium salt) was successfully embedded into the channels of the crystals by diffusion from solution, resulting in fluorescent crystals. These "colored" crystals displayed polarized emission (red) with a high polarization ratio because of the alignment of these dyes imposed by the crystallographic structure. A second-harmonic generation (SHG) study revealed Kleinman symmetry-forbidden nonlinear optical properties. These surface-bound and oriented SHG-active MOFs have the potential for use as single nonlinear optical (NLO) devices.

15.
J Chem Phys ; 153(2): 024504, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668928

RESUMEN

The induction of homogeneous and oriented ice nucleation has to date not been achieved. Here, we report induced nucleation of ice from millimeter sized supercooled water drops illuminated by ns-optical laser pulses well below the ionization threshold making use of particular laser beam configurations and polarizations. Employing a 100 ps synchrotron x-ray pulse 100 ns after each laser pulse, an unambiguous correlation was observed between the directions and the symmetry of the laser fields and that of the H-bonding arrays of the induced ice crystals. Moreover, an analysis of the x-ray diffraction data indicates that, in the main, the induced nucleation of ice is homogeneous at temperatures well above the observed and predicted values for supercooled water.

16.
J Am Chem Soc ; 141(50): 19736-19745, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31762278

RESUMEN

The eyes of many fish contain a reflecting layer of organic crystals partially surrounding the photoreceptors of the retina, which are commonly believed to be composed of guanine. Here we study an unusual fish eye from Stizostedion lucioperca that contains two layers of organic crystals. The crystals in the outer layer are thin plates, whereas the crystals in the inner tapetum layer are block-shaped. We show that the outer layer indeed contains guanine crystals. Analyses of solutions of crystals from the inner layer indicated that the block-shaped crystals are composed of xanthopterin. A model of the structure of the block-shaped crystals was produced using symmetry arguments based on electron diffraction data followed by dispersion-augmented DFT calculations. The resulting crystal structure of xanthopterin included, however, a problematic repulsive interaction between C═O and N of two adjacent molecules. Knowing that dissolved 7,8-dihydroxanthopterin can oxidize to xanthopterin, we replaced xanthopterin with 7,8-dihydroxanthopterin in the model. An excellent fit was obtained with the powder X-ray diffraction pattern of the biogenic crystals. We then analyzed the biogenic block-shaped crystals in their solid state, using MALDI-TOF and Raman spectroscopy. All three methods unequivocally prove that the block-shaped crystals in the eye of S. lucioperca are crystals of 7,8-dihydroxanthopterin. On the basis of the eye anatomy, we deduce that the guanine crystals form a reflective layer producing the silvery color present on part of the eye surface, whereas the block-shaped crystals backscatter light into the retina in order to increase the light sensitivity of the eye.

17.
Adv Mater ; 30(51): e1805179, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30345718

RESUMEN

Due to their distinctive electronic, optical, and chemical properties, metal nanoplates represent important building blocks for creating functional superstructures. Here, a general deposition method for synthesizing Ag nanoplate architectures, which is compatible with a wide substrate range (flexible, curved, or recessed; consisting of carbon, silicon, metals, oxides, or polymers) is reported. By adjusting the reaction conditions, nucleation can be triggered in the bulk solution, on seeds and by electrodeposition, allowing the production of nanoplate suspensions as well as direct surface modification with open-porous nanoplate films. The latter are fully percolated, possess a large, easily accessible surface, a defined nanostructure with {111} basal planes, and expose defect-rich, particularly reactive edges in high density, making them compelling platforms for heterogeneous catalysis, and electro- and flow chemistry. This potential is showcased by exploring the catalytic performance of the nanoplates in the reduction of carbon dioxide, 4-nitrophenol, and hydrogen peroxide, devising two types of microreactors, and by tuning the nanoplate functionality with derivatization reactions.

18.
Nanoscale ; 10(43): 20147-20154, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30221262

RESUMEN

Upon photoexcitation, self-assembled PDI nanocrystals (S1S0) in the form of rods of 70 nm width and 1 µm length are subject to a symmetry breaking charge separation (SBCS) as the first step in the singlet fission (SF) sequence. Hereby, the correlated pair of triplet excited states 1(T1T1) is formed with a quantum yield of 122%. Decoherence and triplet diffusion within the nanocrystals affords a long-lived, uncorrelated pair of triplet excited states (T1 + T1) with a quantum yield of 24%.

19.
Adv Mater ; 30(20): e1800413, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603418

RESUMEN

1D core-shell heterojunction nanostructures have great potential for high-performance, compact optoelectronic devices owing to their high interface area to volume ratio, yet their bottom-up assembly toward scalable fabrication remains a challenge. Here the site-controlled growth of aligned CdS-CdSe core-shell nanowalls is reported by a combination of surface-guided vapor-liquid-solid horizontal growth and selective-area vapor-solid epitaxial growth, and their integration into photodetectors at wafer-scale without postgrowth transfer, alignment, or selective shell-etching steps. The photocurrent response of these nanowalls is reduced to 200 ns with a gain of up to 3.8 × 103 and a photoresponsivity of 1.2 × 103 A W-1 , the fastest response at such a high gain ever reported for photodetectors based on compound semiconductor nanostructures. The simultaneous achievement of sub-microsecond response and high-gain photocurrent is attributed to the virtues of both the epitaxial CdS-CdSe heterojunction and the enhanced charge-separation efficiency of the core-shell nanowall geometry. Surface-guided nanostructures are promising templates for wafer-scale fabrication of self-aligned core-shell nanostructures toward scalable fabrication of high-performance compact photodetectors from the bottom-up.

20.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29495394

RESUMEN

Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.


Asunto(s)
Durapatita/química , Electroforesis , Fulerenos/química , Nanopartículas/química , Electroforesis/métodos , Nanopartículas/ultraestructura , Espectrometría Raman , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...