Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Chem Biol Interact ; 387: 110821, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38042398

Hypertension is the most important and well-known risk factor for cardiovascular disease (CVD). Recently, acute organophosphate (OP) poisoning has also been pointed as a CVD risk factor. Despite this evidence, no studies have contrasted the acute toxicosis and cardiovascular (CV) effects of OP poisoning under conditions of normotension and hypertension. In this work, adult male normotensive Wistar and Spontaneously Hypertensive rats (SHR) were intraperitoneally injected with saline or chlorpyrifos (CPF), an OP compound, monitored for acute toxicosis signs and 24-h survival. After poisoning, blood pressure, heart rate and ventilation were recorded, the Bezold-Jarisch Reflex (BJR), the Chemoreflex (CR) were chemically activated, as well as the cardiac autonomic tone (AUT) was assessed. Erythrocyte and brainstem acetylcholinesterase and plasmatic butyrylcholinesterase (BuChE) activities were measured as well as lipid peroxidation, advanced oxidation protein products (AOPP), nitrite/nitrate levels, expression of catalase, TNFα and angiotensin-I converting enzyme (ACE-1) within the brainstem. CPF induced a much more pronounced acute toxicosis and 33 % lethality in SHR. CPF poisoning impaired ventilation in SHR, the BJR reflex responses in Wistar rats, and the chemoreflex tachypneic response in both strains. CPF inhibited activity of cholinesterases in both strains, increased AOPP and nitrite/nitrate levels and expression of TNFα and ACE-1 in the brainstem of Wistar rats. Interestingly, SHR presented a reduced intrinsic BuChE activity, an important bioscavenger. Our findings show that, CPF at sublethal doses in normotensive rats lead to lethality and much more pronounced acute toxicity signs in the SHR. We also showed that cardiorespiratory reflexes were differentially impacted after CPF poisoning in both strains and that the cardiorespiratory disfunction seems to be associated with interference in cholinergic transmission, oxidative stress and inflammation. These results points to an increased susceptibility to acute toxicosis in hypertension, which may impose a significant risk to vulnerable populations.


Chlorpyrifos , Hypertension , Organophosphate Poisoning , Rats , Male , Animals , Chlorpyrifos/toxicity , Rats, Wistar , Acetylcholinesterase/metabolism , Butyrylcholinesterase , Nitrates , Nitrites , Advanced Oxidation Protein Products , Tumor Necrosis Factor-alpha , Hypertension/chemically induced , Rats, Inbred SHR
2.
Toxicol Appl Pharmacol ; 389: 114879, 2020 01 15.
Article En | MEDLINE | ID: mdl-31931016

In a previous work we showed that the organophosphate pesticide (OP) chlorpyrifos (CPF) reduces the protective chemoreflex and baroreflex responses in rats. However, whether the antidotes atropine (ATR) and pralidoxime (2-PAM) are capable of restoring these reflex functions remains unexplored. Rats were poisoned with CPF (30 mg.kg-1, i.p.) and one hour after the intoxication, ATR (10 mg.kg-1, i.p.) and 2-PAM (40 mg.kg-1, i.p.) were administrated separately or in combination. Cardiorespiratory parameters were recorded in awake rats 24 h after CPF. Systolic blood pressure (SBP) and heart rate (HR) variability and spontaneous baroreflex sensitivity (sBRS) were derived from undisturbed recordings (30 min), while chemoreflex was assessed through potassium cyanide (KCN) i.v. injections (10, 20, 40, 80 µg/rat). CPF poisoning increased SBP variability and low frequency/high frequency (LF/HF) ratio of the HR variability spectrum, indicating autonomic imbalance with increased cardiac sympathetic tone. sBRS was not changed. Treatment with 2-PAM restored SBP variability, whilst both antidotes increased LF/HF ratio. CPF poisoning reduced the hypertensive, bradycardic and tachypneic chemoreflex responses. Chemoreflex-induced hypertensive response was restored by 2-PAM treatment, while ATR recovered the bradycardic response. Both antidotes restored the chemoreflex tachypneic response. Our data show distinct effects of ATR and 2-PAM on cardiorespiratory parameters affected by OP poisoning. While 2-PAM rescued the chemoreflex hypertensive response, ATR reversed chemoreflex bradycardic dysfunction. Although 2-PAM clinical use is questioned in some countries, our data indicate that summation of effects of both antidotes appears beneficial on the cardiorespiratory system and peripheral chemoreflex function.


Antidotes/pharmacology , Atropine/pharmacology , Cardiovascular System/drug effects , Chlorpyrifos/adverse effects , Organophosphate Poisoning/drug therapy , Pralidoxime Compounds/pharmacology , Respiratory System/drug effects , Animals , Baroreflex/drug effects , Blood Pressure/drug effects , Bradycardia/drug therapy , Cholinesterase Inhibitors/adverse effects , Heart Rate/drug effects , Insecticides/adverse effects , Male , Rats , Rats, Wistar
3.
Cardiovasc Toxicol ; 19(6): 548-564, 2019 12.
Article En | MEDLINE | ID: mdl-31098944

Previous studies showed that chlorpyrifos (CPF) acute exposure impaired cardiorespiratory reflexes. Evidence also indicates that continuous exposure to organophosphorus compounds impairs cardiovascular function. However, the effect of intermittent exposure to CPF, as may be experienced in the real world, on tonic and reflex cardiorespiratory function remains unexplored. Wistar rats were injected with saline or CPF for 4 weeks (3 times/week) or 12 weeks (once/week) at the doses of 7 mg/kg and 10 mg/kg. After exposure, blood pressure (BP), heart rate (HR), respiratory rate (fR), tidal volume (VT), and minute volume (VE) were recorded. Systolic BP and pulse interval (PI) variability, HR spectrum, spontaneous baroreflex and chemoreflex function were also evaluated. Plasma butyrylcholinesterase and brainstem acetylcholinesterase activities were quantified. Enzymatic activity of the CPF animals was reduced after both treatment periods. Baseline BP, HR, and fR, as well as systolic BP and PI variability indices, did not change, after CPF treatment. VT and VE were elevated in CPF animals. CPF exposure increased the very low-frequency component of the HR spectrum. Baroreflex gain was reduced after CPF 4-week exposure. Chemoreflex bradycardia was reduced in the CPF-treated rats. These data show that intermittent exposure to CPF impairs cardiorespiratory function in rats. These results may have important clinical implications for workers seasonally exposed to these compounds.


Baroreflex/drug effects , Brain Stem/drug effects , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Heart/innervation , Insecticides/toxicity , Lung/innervation , Acetylcholinesterase/metabolism , Animals , Blood Pressure/drug effects , Brain Stem/enzymology , Brain Stem/physiopathology , Butyrylcholinesterase/blood , Cardiotoxicity , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Heart Rate/drug effects , Male , Rats, Wistar , Respiratory Rate/drug effects , Tidal Volume/drug effects , Time Factors
4.
Neurotoxicol Teratol ; 71: 6-15, 2019.
Article En | MEDLINE | ID: mdl-30458229

Acute organophosphate (OP) poisoning induces well-known signs of toxicosis related to acetylcholinesterase (AChE) inhibition. However, the relationship between acute OP poisoning and the onset of psychiatric disorders remains unclear. Thus, we investigated behavioural and biochemical consequences of acute exposure to the OP chlorpyrifos in male rats and also the effectiveness of the antidotes atropine and pralidoxime on reversing these changes. A sub-lethal dose of commercial chlorpyrifos (20 mg/kg, i.p.) elicited signs of acute toxicosis during the first hours after its injection in rats. Twenty-four hours after treatment, this single dose of chlorpyrifos induced a depressive-like behaviour in the rat forced swimming test without impairing locomotor activity. At this time (24 h), chlorpyrifos decreased plasma butyrylcholinesterase (BChE) activity and hippocampal, striatal and prefrontal cortical AChE activity in rats. The behavioural and biochemical consequences of acute chlorpyrifos poisoning do not seem to be long lasting, since 30 days later they were absent. We evaluated whether these behavioural and biochemical consequences of acute chlorpyrifos treatment would be reversed by the antidotes atropine (10 mg/kg i.p.) and/or pralidoxime (40 mg/kg; i.p.) given 1 h after poisoning. Pralidoxime partially reactivated the AChE activity in the prefrontal cortex, but not in the hippocampus and striatum. Atropine attenuated the depressive-like behaviour induced by chlorpyrifos in rats. Our results suggest that acute chlorpyrifos poisoning induces a transient depressive-like behaviour possible related to hippocampal AChE inhibition. They suggest that treatment with atropine and pralidoxime seems to be insufficient to counteract all the effects of OP acute poisoning, at least in rats.


Antidotes/pharmacology , Atropine/pharmacology , Brain/drug effects , Chlorpyrifos/toxicity , Depression/prevention & control , Organophosphate Poisoning/prevention & control , Acetylcholinesterase/metabolism , Animals , Antidotes/administration & dosage , Atropine/administration & dosage , Behavior, Animal/drug effects , Brain/enzymology , Depression/chemically induced , Dose-Response Relationship, Drug , Drug Therapy, Combination , Male , Organophosphate Poisoning/etiology , Pralidoxime Compounds/administration & dosage , Pralidoxime Compounds/pharmacology , Rats , Rats, Wistar
...