Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Annu Rev Anim Biosci ; 12: 1-20, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37906837

Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.


Ecosystem , Fisheries , Animals , Metagenomics , Whole Genome Sequencing/veterinary
2.
Sci Rep ; 13(1): 8654, 2023 05 27.
Article En | MEDLINE | ID: mdl-37244945

Cultivated beets (Beta vulgaris ssp. vulgaris) constitute important crop plants, in particular sugar beet as an indispensable source of sucrose. Several species of wild beets of the genus Beta with distribution along the European Atlantic coast, Macaronesia, and throughout the Mediterranean area exist. Thorough characterization of beet genomes is required for straightforward access to genes promoting genetic resistance against biotic and abiotic stress. Analysing short-read data of 656 sequenced beet genomes, we identified 10 million variant positions in comparison to the sugar beet reference genome RefBeet-1.2. The main groups of species and subspecies were distinguishable based on shared variation, and the separation of sea beets (Beta vulgaris ssp. maritima) into a Mediterranean and an Atlantic subgroup as suggested by previous studies could be confirmed. Complementary approaches of variant-based clustering were employed based on PCA, genotype likelihoods, tree calculations, and admixture analysis. Outliers suggested the occurrence of inter(sub)specific hybridisation, independently confirmed by different analyses. Screens for regions under artificial selection in the sugar beet genome identified 15 Mbp of the genome as variation-poor, enriched for genes involved in shoot system development, stress response, and carbohydrate metabolism. The resources presented herein will be valuable for crop improvement and wild species monitoring and conservation efforts, and for studies on beet genealogy, population structure and population dynamics. Our study provides a wealth of data for in-depth analyses of further aspects of the beet genome towards a thorough understanding of the biology of this important complex of a crop species and its wild relatives.


Beta vulgaris , Beta vulgaris/genetics , Crops, Agricultural/genetics , Base Sequence , Genomics , Sugars
3.
BMC Plant Biol ; 23(1): 203, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37076814

BACKGROUND: Anthropogenic climate change leads to increasing temperatures and altered precipitation and snowmelt patterns, especially in alpine ecosystems. To understand species' responses to climate change, assessment of genetic structure and diversity is crucial as the basis for the evaluation of migration patterns, genetic adaptation potential as well as the identification of adaptive alleles. RESULTS: We studied genetic structure, diversity and genome-environment associations of two snowbed species endemic to the Eastern Alps with a large elevational range, Achillea clusiana Tausch and Campanula pulla L. Genotyping-by-sequencing was employed to assemble loci de novo, call variants and perform population genetic analyses. Populations of either species were distinguishable by mountain, and to some extent by elevation. We found evidence for gene flow between elevations. Results of genome-environment associations suggested similar selective pressures acting on both species, emanating mainly from precipitation and exposition rather than temperature. CONCLUSIONS: Given their genetic structure and amount of gene flow among populations the two study species are suitable to serve as a model for genetic monitoring of climate change adaptation along an elevation gradient. Consequences of climate change will predominantly manifest via changes in precipitation and, thus, duration of snow cover in the snowbeds and indirectly via shrub encroachment accompanied by increasing shading of snowbeds at lower range margins. Assembling genomes of the study species and studying larger sample sizes and time series will be necessary to functionally characterize and validate the herein identified genomic loci putatively involved in adaptive processes.


Ecosystem , Gene Flow , Temperature , Genomics , Adaptation, Physiological , Climate Change
4.
G3 (Bethesda) ; 12(12)2022 12 01.
Article En | MEDLINE | ID: mdl-36227030

Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.


Disorders of Sex Development , Horses , Infertility, Male , Animals , Male , Disorders of Sex Development/genetics , DNA Copy Number Variations/genetics , Genes, Y-Linked/genetics , Horses/genetics , Infertility, Male/genetics , Infertility, Male/veterinary , Mammals/genetics , Sexual Development , Y Chromosome/genetics
5.
Genes (Basel) ; 13(2)2022 01 26.
Article En | MEDLINE | ID: mdl-35205275

The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.


Genetic Variation , Y Chromosome , Animals , Female , Haplotypes , Horses/genetics , Male , Pedigree , Phylogeny , Y Chromosome/genetics
6.
Science ; 367(6484)2020 03 20.
Article En | MEDLINE | ID: mdl-32193295

Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.


Genetic Variation , Genetics, Population , Genome, Human , Whole Genome Sequencing , Africa , Americas , Animals , Asia , DNA Copy Number Variations , Haplotypes , Hominidae/genetics , Humans , INDEL Mutation , Neanderthals/genetics , Oceania , Phylogeny , Polymorphism, Single Nucleotide , Population Density , Racial Groups/genetics
7.
Front Genet ; 10: 423, 2019.
Article En | MEDLINE | ID: mdl-31178891

Polymorphic markers on the male-specific part of the Y chromosome (MSY) provide useful information for tracking male genealogies. While maternal lineages are well studied in Old World camelids using mitochondrial DNA, the lack of a Y-chromosomal reference sequence hampers the analysis of male-driven demographics. Recently, a shotgun assembly of the horse MSY was generated based on short read next generation sequencing data. The haplotype network resulting from single copy MSY variants using the assembly as a reference revealed sufficient resolution to trace individual male lines in this species. In a similar approach we generated a 3.8 Mbp sized assembly of the MSY of Camelus bactrianus. The camel MSY assembly was used as a reference for variant calling using short read data from eight Old World camelid individuals. Based on 596 single nucleotide variants we revealed a Y-phylogenetic network with seven haplotypes. Wild and domestic Bactrian camels were clearly separated into two different haplogroups with an estimated divergence time of 26,999 ± 2,268 years. Unexpectedly, one wild camel clustered into the domestic Bactrian camels' haplogroup. The observation of a domestic paternal lineage within the wild camel population is concerning in view of the importance to conserve the genetic integrity of these highly endangered species in their natural habitat.

8.
Cell ; 177(6): 1419-1435.e31, 2019 05 30.
Article En | MEDLINE | ID: mdl-31056281

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.


Horses/genetics , Animals , Asia , Biological Evolution , Breeding/history , DNA, Ancient/analysis , Domestication , Equidae/genetics , Europe , Female , Genetic Variation/genetics , Genome/genetics , History, Ancient , Male , Phylogeny
9.
Sci Rep ; 9(1): 6095, 2019 04 15.
Article En | MEDLINE | ID: mdl-30988347

Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.


Haplotypes , Horses/genetics , Y Chromosome/genetics , Animals , Breeding , Domestication , Female , Genetic Variation , Male , Pedigree , Phylogeny
10.
Science ; 360(6384): 111-114, 2018 Apr 06.
Article En | MEDLINE | ID: mdl-29472442

The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age.


Horses/classification , Horses/genetics , Animals , DNA, Ancient , Genome , Horses/anatomy & histology , Phenotype , Phylogeny
...