Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12252, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806649

RESUMEN

Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.


Asunto(s)
Región CA2 Hipocampal , Espinas Dendríticas , Ciclo Estral , Animales , Masculino , Femenino , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Ratones , Ciclo Estral/fisiología , Región CA2 Hipocampal/fisiología , Región CA2 Hipocampal/metabolismo , Caracteres Sexuales , Neuronas/metabolismo
2.
J Comp Neurol ; 531(2): 281-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36221961

RESUMEN

The cytokine tumor necrosis factor (TNF) is involved in the regulation of physiological and pathophysiological processes in the central nervous system. In previous work, we showed that mice lacking constitutive levels of TNF exhibit a reduction in spine density and changes in spine head size distribution of dentate granule cells. Here, we investigated which TNF-receptor pathway is responsible for this phenotype and analyzed granule cell spine morphology in TNF-R1-, TNF-R2-, and TNF-R1/R2-deficient mice. Single granule cells were filled with Alexa568 in fixed hippocampal brain slices and immunostained for the actin-modulating protein synaptopodin (SP), a marker for strong and stable spines. An investigator blind to genotype investigated dendritic spines using deconvolved confocal image stacks. Similar to TNF-deficient mice, TNF-R1 and TNF-R2 mutants showed a decrease in the size of small spines (SP-negative) with TNF-R1/R2-KO mice exhibiting an additive effect. TNF-R1 mutants also showed an increase in the size of large spines (SP-positive), mirroring the situation in TNF-deficient mice. Unlike the TNF-deficient mouse, none of the TNF-R mutants exhibited a reduction in their granule cell spine densities. Since TNF tunes the excitability of networks, lack of constitutive TNF reduces network excitation. This may explain why we observed alterations in spine head size distributions in TNF- and TNF-R-deficient granule cells. The changes in spine density observed in the TNF-deficient mouse could not be linked to canonical TNF-R-signaling. Instead, noncanonical pathways or unknown developmental functions of TNF may cause this phenomenon.


Asunto(s)
Espinas Dendríticas , Giro Dentado , Receptores Tipo II del Factor de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral , Animales , Ratones , Espinas Dendríticas/patología , Giro Dentado/metabolismo , Hipocampo/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo
3.
J Neurosci ; 41(24): 5157-5172, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33926999

RESUMEN

The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP-/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-ß and not by APPsα, and it is neither observed in APP+/+ tissue treated with ß- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-ß levels.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Animales , Femenino , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Exp Neurol ; 312: 1-9, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30401642

RESUMEN

Neurons adjust their synaptic strength in a homeostatic manner following changes in network activity and connectivity. While this form of plasticity has been studied in detail for excitatory synapses, homeostatic plasticity of inhibitory synapses remains not well-understood. In the present study, we employed entorhinal cortex lesion (ECL) of organotypic entorhino-hippocampal tissue cultures to test for homeostatic changes in GABAergic neurotransmission onto partially denervated dentate granule cells. Using single and paired whole-cell patch-clamp recordings, as well as immunostainings for synaptic markers, we find that excitatory synaptic strength is robustly increased 3 days post lesion (dpl), whereas GABAergic neurotransmission is not changed after denervation. Even under conditions of pharmacological inhibition of glutamatergic neurotransmission, which prevents neurons to compensate for the loss of input via excitatory synaptic scaling, down-scaling of GABAergic synapses does not emerge 3 days after denervation. We conclude that granule cells maintain structural and functional properties of GABAergic synapses even in the face of substantial changes in network connectivity. Hence, alterations in inhibitory neurotransmission, as seen in pathological brain states, may not simply reflect a homeostatic response to disconnection.


Asunto(s)
Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Desnervación , Giro Dentado/citología , Corteza Entorrinal/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...