Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 49(1): 159-168, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31880775

RESUMEN

Neonicotinoid seed treatments are frequently used in cotton (Gossypium hirsutum L. [Malvales: Malvaceae]) production to provide protection against early-season herbivory. However, there is little known about how these applications affect extrafloral nectar (EFN), an important food resource for arthropod natural enemies. Using enzyme-linked immunosorbent assays, we found that neonicotinoids were translocated to the EFN of clothianidin- and imidacloprid-treated, greenhouse-grown cotton plants at concentrations of 77.3 ± 17.3 and 122.6 ± 11.5 ppb, respectively. We did not find differences in the quantity of EFN produced by neonicotinoid-treated cotton plants compared to untreated controls, either constitutively or after mechanical damage. Metabolomic analysis of sugars and amino acids from treated and untreated plants did not detect differences in overall composition of EFN. In bioassays, female Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) parasitoid wasps that fed on EFN from untreated, clothianidin-treated, or imidacloprid-treated plants demonstrated no difference in mortality or parasitization success. We also conducted acute toxicity assays for C. marginiventris fed on honey spiked with clothianidin and imidacloprid and established LC50 values for male and female wasps. Although LC50 values were substantially higher than neonicotinoid concentrations detected in EFN, caution should be used when translating these results to the field where other stressors could alter the effects of neonicotinoids. Moreover, there are a wide range of possible sublethal impacts of neonicotinoids, none of which were explored here. Our results suggest that EFN is a potential route of exposure of neonicotinoids to beneficial insects and that further field-based studies are warranted.


Asunto(s)
Insecticidas , Malvaceae , Animales , Femenino , Gossypium , Malvales , Neonicotinoides , Nitrocompuestos , Néctar de las Plantas
2.
J Chem Ecol ; 40(10): 1090-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25319361

RESUMEN

Plants express inducible direct and indirect defenses in response to herbivory. The plant hormone jasmonic acid (JA) and related signaling compounds referred to as jasmonates play a central role in regulating defense responses to a wide range of herbivores.We assessed whether treating tomato seeds with 0.8 mM of methyl jasmonate (MeJA) affected the performance of the leaf miner Tuta absoluta, and whether possible changes in volatile profiles altered the behavior of its predator Chrysoperla externa. MeJA-treatment significantly lengthened larval development and decreased the pupal weight of T. absoluta. Herbivory alone increased the emissions of α-pinene, 6-methyl 5-hepten-2-one, ß-myrcene, (E)-ß-ocimene, isoterpinolene, TMTT, (Z)-3-hexenyl butyrate, and hexyl salicylate. MeJA seed treatment significantly decreased the emissions of α-cubebene from undamaged and herbivore-infested plants. In addition, the emissions of several compounds were lower in the absence of herbivory. Chrysoperla. externa preferred odors from herbivore-infested plants over those from control plants, regardless of the MeJA-treatment, and they did not show any preference for herbivore-infested plants for any of the MeJA-treatments. Our results show preliminary evidence that the treatment of tomato seeds with MeJA can reduce the performance of Tuta absoluta, and that the chemical differences observed in plant VOC profiles do not alter the behavior of the model predator.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Herbivoria , Interacciones Huésped-Parásitos , Insectos/fisiología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/parasitología , Solanum lycopersicum/parasitología , Animales , Lepidópteros/fisiología , Solanum lycopersicum/fisiología , Conducta Predatoria , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA