Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Chin Herb Med ; 16(2): 227-230, 2024 Apr.
Article En | MEDLINE | ID: mdl-38706817

Objective: To study the compounds isolated from Penicillium HDS-Z-1E, an endophytic fungal strain isolated from Taxus cuspidata and their activation effect of catalase (CAT). Methods: The chemical constituents were isolated from Penicillium HDS-Z-1E, by using silica gel, Sephadex LH-20 and HPLC. The structural elucidations of five metabolites were elucidated on the basis of spectroscopic including 1H-NMR, 13C-NMR, HMBC and HSQC. Their activation sites of catalase have been investigated by molecular docking. Results: Five metabolites, compounds (1-5) were isolated from Penicillium HDS-Z-1E and identified as 4-hydroxy-4-methyltetrahydro-2H-pyran-2-one (1), 4-hydroxymethyl-5, 6-dihydro-pyran-2-one (2), 5, 6-dihydro-2-oxo-2H-pyran-4-carboxylic (3), N-acetyl-hydrazinobenzoic acid (4), and methyl 2-(2, 5-dihydroxyphenyl) acetate (5). Conclusion: Compound 3 is a new compound. Compounds 3 and 4 may have potential activators of catalase, providing a theoretical basis for the development of CAT activators.

2.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731603

A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.


Alkaloids , Penicillium , Quinazolinones , Rhodiola , Seeds , Penicillium/chemistry , Quinazolinones/chemistry , Quinazolinones/pharmacology , Rhodiola/chemistry , Rhodiola/microbiology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Germination/drug effects , Molecular Structure , Endophytes/chemistry
3.
Molecules ; 29(5)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38474639

Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.


Biological Products , Terpenes , Fermentation
4.
Plants (Basel) ; 12(24)2023 Dec 11.
Article En | MEDLINE | ID: mdl-38140457

Oxalis triangularis 'Purpurea' has significant ornamental value in landscaping. There is a critical necessity to elucidate the gene functions of O. triangularis 'Purpurea' and dissect the molecular mechanisms governing key ornamental traits. However, a reliable genetic transformation method remains elusive. In this study, our investigation revealed that various transformation parameters, including recipient material (petioles), pre-culture time (2-5 days), acetosyringone (AS) concentration (100-400 µM), Agrobacterium concentrations (OD600 = 0.4-1.0), infection time (5-20 min), and co-culture time (2-5 days), significantly impacted the stable genetic transformation in O. triangular 'Purpurea'. Notably, the highest genetic transformation rate was achieved from the leaf discs pre-cultured for 3 days, treated with 200 µM AS infected with Agrobacterium for 11 min at OD600 of 0.6, and subsequently co-cultured for 3 days. This treatment resulted in a genetic transformation efficiency of 9.88%, and it only took 79 days to produce transgenic plants. Our transformation protocol offers advantages of speed, efficiency, and simplicity, which will greatly facilitate genetic transformation for O. triangular 'Purpurea' and gene function studies.

5.
Nat Prod Res ; : 1-6, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38124391

A new lignan named (-)-ginkgool-9-O-ß-glucopyranoside (1) together with eight known lignans (2-9) were isolated from Urtica triangularis subsp. pinnatifida (Hand.-Mazz.) C.J.Chen. According to the mass spectrometry and spectroscopic analyses, the gross structure and absolute configuration of the new lignan were elucidated. The cytotoxic effects of compounds 1-9 on BPH-1 cells and the docking results on type II 5α-reductase were analysed to evaluate their anti-BPH activity. The results showed better anti-BPH activity that compound 4 displaying an IC50 of 79.75 ± 3.68 µM than finasteride presenting an IC50 of 91.8 ± 3.74 µM. Compounds 1, 2 and 5 had moderate anti-BPH activity compared with finasteride.

6.
Fitoterapia ; 164: 105361, 2023 Jan.
Article En | MEDLINE | ID: mdl-36435487

Seven undescribed polyketide compounds (1-4, 9-11) and six known polyketide compounds (5-8,12, 13) were isolated from Rhodiola tibetica endophytic Penicillium sp. HJT-A-10. The structural of seven undescribed polyketides metabolites were established on the basis of spectroscopic methods. The results of anti-inflammatory activity showed that compounds 1-8,10-13 had significant inhibitory effects on LPS-induced NO production in RAW 264.7 cells.


Penicillium , Polyketides , Rhodiola , Penicillium/chemistry , Molecular Structure , Anti-Inflammatory Agents/chemistry
7.
Acad Radiol ; 30(4): 717-726, 2023 04.
Article En | MEDLINE | ID: mdl-35953356

RATIONALE AND OBJECTIVES: To develop, validate, and test a comprehensive radiomics prediction model to distinguish parotid polymorphic adenomas (PAs) and warthin tumors (WTs) using clinical data and enhanced computed tomography (CT) from a multicenter cohort. MATERIALS AND METHODS: A total of 267 patients with PAs (n =172) or WTs (n = 95) from two hospitals were randomly divided into training (n =188) and validation (n =79) datasets. Radiomics features were extracted from the enhanced CT (arterial phase) followed by dimensionality reduction. Clinical and CT features were combined to establish a prediction model. A radiomics nomogram was constructed by combining RadScore and clinical factors. Moreover, an independent dataset of 31 patients from a third hospital was employed to test the model. Thus, the performance of the nomogram, radiomics signature, and clinical models was evaluated on the training, validation, and the independent testing datasets. Receiver operating characteristic (ROC) curves were used to compare the performance, and decision curve analysis (DCA) was used to evaluate the clinical effectiveness of the model. RESULTS: A total of 15 radiomics features were selected from CT data as the imaging markers to generate RadScores, and demographics or clinical data like age, sex, and smoking factors combined with RadScores were used to distinguish PAs and WTs based on multivariate logistic regression analyses. The results showed that radiomics nomograms combining clinical factors and RadScores provided satisfactory predictive values for distinguishing PAs from WTs, with areas under ROC curves (AUC) of 0.979, 0.922, and 0.903 for the training, validation, and the independent testing datasets, respectively. Decision curve analysis revealed that the radiomics nomogram outperformed the clinical factor models in terms of accuracy and effectiveness. CONCLUSION: CT-based radiomics nomograms combining RadScores and clinical factors can be used to identify PAs and WTs, which may help tumor management by clinicians.


Adenolymphoma , Adenoma , Humans , Nomograms , Adenolymphoma/diagnostic imaging , Tomography, X-Ray Computed , Arteries , Adenoma/diagnostic imaging , Retrospective Studies
8.
Nat Prod Res ; 37(3): 411-416, 2023 Feb.
Article En | MEDLINE | ID: mdl-34542361

Three new secolignans were found in the detailed chemical study of Peperomia blanda (Jacq.) Kunth collected from China. Detailed NMR data analysis, especially 1H NMR, 13C NMR and 2 D NMR, elucidates the structures of the three new secolignans.


Peperomia , Peperomia/chemistry , Magnetic Resonance Spectroscopy , China
9.
Phytochemistry ; 203: 113383, 2022 Nov.
Article En | MEDLINE | ID: mdl-36007665

Seven undescribed polyketides with particular ortho-trisubstituted benzo[c]furan and benzo[c]oxepin spiro structures were isolated from Rhodiola tibetica endophytic fungus Alternaria sp. HJT-Y7. Structural elucidations of these compounds were determined mainly by NMR and HR-ESI-MS analysis. An assumed polyketide biosynthetic pathway of these isolates was proposed. Two undescribed compounds and four known compounds showed significant inhibitory effects on LPS-induced NO production in RAW 264.7 cells without cytotoxicity at their effective concentrations.


Polyketides , Rhodiola , Alternaria/metabolism , Anti-Inflammatory Agents/pharmacology , Furans , Lipopolysaccharides/pharmacology , Oxepins , Polyketides/chemistry , Polyketides/pharmacology , Rhodiola/metabolism
10.
Plant Cell ; 34(9): 3425-3442, 2022 08 25.
Article En | MEDLINE | ID: mdl-35642941

Plants manage the high cost of immunity activation by suppressing the expression of defense genes during normal growth and rapidly switching them on upon pathogen invasion. TGAs are key transcription factors controlling the expression of defense genes. However, how TGAs function, especially in monocot plants like rice with continuously high levels of endogenous salicylic acid (SA) remains elusive. In this study, we characterized the role of OsTGA5 as a negative regulator of rice resistance against blast fungus by transcriptionally repressing the expression of various defense-related genes. Moreover, OsTGA5 repressed PTI responses and the accumulation of endogenous SA. Importantly, we showed that the nucleus-localized casein kinase II (CK2) complex interacts with and phosphorylates OsTGA5 on Ser-32, which reduces the affinity of OsTGA5 for the JIOsPR10 promoter, thereby alleviating the repression of JIOsPR10 transcription and increasing rice resistance. Furthermore, the in vivo phosphorylation of OsTGA5 Ser-32 was enhanced by blast fungus infection. The CK2 α subunit, depending on its kinase activity, positively regulated rice defense against blast fungus. Taken together, our results provide a mechanism for the role of OsTGA5 in negatively regulating the transcription of defense-related genes in rice and the repressive switch imposed by nuclear CK2-mediated phosphorylation during blast fungus invasion.


Magnaporthe , Oryza , Casein Kinase II , Disease Resistance , Gene Expression Regulation, Plant , Phosphorylation , Plant Diseases , Plant Proteins , Salicylic Acid , Transcription, Genetic
11.
Chem Biodivers ; 19(7): e202200070, 2022 Jul.
Article En | MEDLINE | ID: mdl-35620918

Phytochemical investigation of the aerial part of Laportea bulbifera (Siebold & Zucc.) Wedd. (L. bulbifera) showed the isolation of seventeen compounds, including five flavonoids (1-4 and 6), one terpenoid (5), five phenolic acids (7-11), one coumarin (12), two steroids (13-14), and three alkaloids (15-17). Structure elucidations of these compounds were performed on the basis of extensive NMR experiments and compared with the published data in the references. It is remarkable that compounds (3-5) were firstly isolated from the Urticaceae family, compounds (3-8, 11 and 15-17) were firstly obtained from genus Laportea. Furthermore, the result of the chemotaxonomic significance discussion showed that compounds (2-4) may can be served as compound fingerprints to distinguish between species of L. bulbifera and genus Urtica, and what' more, we proposed a bold conjecture that isoflavones can distinguish between species of L. bulbifera and genus Urtica. At the same time, the molecular docking method was used to evaluate the inhibitory effect of these compounds on human steroid 5α-reductase 2 (SRD5α2). The results showed that compounds (1-4 and 6) had better expected effects than the positive drug finasteride can by effectively binding to the active sites of SRD5α2. This study assisted in the future phytochemical and chemotaxonomic research on genus Laportea. Simultaneously, this research provided the theoretical evidence for the application of L. bulbifera in treating benign prostatic hyperplasia (BPH).


Urticaceae , Computational Biology , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Urticaceae/chemistry
12.
Mol Cell ; 81(22): 4591-4604.e8, 2021 11 18.
Article En | MEDLINE | ID: mdl-34592134

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


ADP-Ribosylation , Arabidopsis Proteins/metabolism , Arabidopsis/immunology , DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Plant Immunity , Ubiquitination , Zinc Fingers , ADP Ribose Transferases/metabolism , Adenosine Diphosphate/chemistry , Arabidopsis/metabolism , CRISPR-Cas Systems , Genes, Plant , Glycoside Hydrolases/metabolism , Homeostasis , Humans , Hydrolysis , Mutation , Plants, Genetically Modified , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Proteostasis , Seedlings/metabolism , Substrate Specificity , Tristetraprolin/chemistry , Two-Hybrid System Techniques , Ubiquitin/chemistry
13.
Bioorg Chem ; 116: 105309, 2021 11.
Article En | MEDLINE | ID: mdl-34479054

Six new polyketone metabolites, compounds (1-6) and seven known polyketone compounds (7-13) were isolated from Rhodiola tibetica endophytic fungus Alternaria sp. The structural elucidation of five new polyketone metabolites were elucidated on the basis of spectroscopic including 2D NMR and HRMS and spectrometric analysis. Inhibition rate evaluation revealed that compounds 1(EC50 = 0.02 mM), 3(EC50 = 0.3 mM), 6(EC50 = 0.07 mM), 8(EC50 = 0.1 mM) and 9(EC50 = 0.04 mM) had inhibitory effect on the SARS-CoV-2 virus.


Alternaria/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Ketones/isolation & purification , Ketones/pharmacology , Polymers/isolation & purification , Polymers/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Humans , Ketones/chemistry , Molecular Structure , Polymers/chemistry
14.
Sci Rep ; 11(1): 11297, 2021 05 28.
Article En | MEDLINE | ID: mdl-34050229

Artemisinin (ART) is the most effective component in malaria treatment, however, the extremely low content restricts its clinical application. Therefore, it is urgent to increase the yield of ART. ART gradually accumulates with aging, small RNA (sRNA) and transcriptome analysis were applied on the leaves of 2-week-old (2 w) and 3-month-old (3 m) A. annua respectively. Among all the annotated sRNAs, 125 were upregulated and 128 downregulated in the 3 m sample compared to the 2 w one. Whereas 2183 genes were upregulated and 2156 downregulated. Notably, the level of miR156 and several annotated miRNAs gradually decreased while SPLs increased. In addition, the genes on ART biosynthesis pathway were significantly upregulated including ADS, CYP71AV1, ADH1, DBR2 and ALDH1, and so were the positive transcription factors like AaERF1, AaORA and AaWRKY1 indicating that age influences the ART biosynthesis by activating the expression of the synthesizing genes as well as positive transcription factors. This study contributes to reveal the regulatory effects of age on ART biosynthesis both in sRNA and transcription levels.


Artemisia annua/metabolism , Artemisinins/metabolism , Artemisinins/pharmacology , Age Factors , Antimalarials/metabolism , Antimalarials/pharmacology , Biosynthetic Pathways/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcriptome/genetics
15.
J Asian Nat Prod Res ; 23(9): 851-858, 2021 Sep.
Article En | MEDLINE | ID: mdl-33118386

Two isopentenyl resorcinols, peperobtusin B and peperobtusin C, have been isolated from Peperomia tetraphylla. Their structures were determined on the basis of spectroscopic methods, especially 1H NMR, 13C NMR, 2D NMR, and HR-TOF-MS. Two compounds were evaluated for cytostatic activity against G2, A 549, Hela and HCT 116 cells, but cytostatic activity of both compounds is weak.


Peperomia , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Resorcinols/pharmacology
16.
Nat Commun ; 11(1): 4859, 2020 09 25.
Article En | MEDLINE | ID: mdl-32978401

Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity.


Autoimmunity/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , GPI-Linked Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Autoimmunity/physiology , Carrier Proteins/immunology , Catharanthus/genetics , Catharanthus/metabolism , Cell Death/genetics , GPI-Linked Proteins/genetics , Gene Expression Regulation, Plant , Glycosylphosphatidylinositols , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Plant Proteins/immunology , Plants, Genetically Modified , RNA Interference , Transcriptome
17.
Nat Plants ; 6(9): 1106-1115, 2020 09.
Article En | MEDLINE | ID: mdl-32839517

The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.


Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , MAP Kinase Signaling System/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Immunity/genetics , Genes, Plant
18.
Zhongguo Zhong Yao Za Zhi ; 45(3): 683-688, 2020 Feb.
Article Zh | MEDLINE | ID: mdl-32237529

It is reported that dihydroartemisinin could reduce the expression of phosphorylated adhesion kinase and matrix metalloproteinase-2, inhibit the growth, migration and invasion of ovarian cancer cells, promote the formation of Treg cells through TGF-beta/Smad signaling pathway, and play an immunosuppressive role; dihydroartemisinin could also inhibit the growth of lung cancer cells by inhibiting the expression of vascular endothelial growth factor(VEGF) receptor KDR. However, there are few studies on dihydroartemisinin in hepatocellular carcinoma cells. In order to preliminarily explore the effect of dihydroartemisinin on invasion and metastasis of hepatocellular carcinoma cells, CCK-8 method and crystal violet staining were used to detect the effect of dihydroartemisinin on the growth of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H. The effects of dihydroartemisinin on the invasion and metastasis of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H were studied by using cell wound healing and Transwell. Western blot was used to detect the protein expression of epidermal growth factor receptor(EGFR) and its downstream signaling pathway in cells treated with dihydroartemisinin for 48 hours. The results showed that dihydroartemisinin could inhibit the growth of hepatocellular carcinoma cell 7402 and highly metastatic hepatocellular carcinoma cell MHCC97 H at 25 µmol·L~(-1). As compared with the control group, the number of cell clones was significantly reduced, and the ability of cell migration and invasion was weakened. Western blot results showed that as compared with the control group, dihydroartemisinin group could down-regulate the protein expression of EGFR and its downstream signaling pathways p-AKT, p-ERK, N-cadherin, Snail and Slug, and up-regulate the expression of E-cadherin protein, thus affecting the migration, invasion and metastasis of hepatocellular carcinoma cells 7402 and MHCC97 H.


Artemisinins/pharmacology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Movement , ErbB Receptors/metabolism , Humans , Liver Neoplasms/drug therapy , Signal Transduction
19.
Plant Physiol ; 183(1): 331-344, 2020 05.
Article En | MEDLINE | ID: mdl-32165446

A wide variety of intrinsic and extrinsic cues lead to cell death with unclear mechanisms. The infertility of some death mutants often hurdles the classical suppressor screens for death regulators. We have developed a transient RNA interference (RNAi)-based screen using a virus-induced gene silencing approach to understand diverse cell death pathways in Arabidopsis (Arabidopsis thaliana). One death pathway is due to the depletion of a MAP kinase (MAPK) cascade, consisting of MAPK kinase kinase 1 (MEKK1), MKK1/2, and MPK4, which depends on a nucleotide-binding site Leu-rich repeat (NLR) protein SUMM2. Silencing of MEKK1 by virus-induced gene silencing resembles the mekk1 mutant with autoimmunity and defense activation. The RNAi-based screen toward Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2, and Calmodulin-binding receptor-like cytoplasmic kinase 3 (CRCK3) to be vital regulators of RNAi MEKK1-induced cell death, consistent with the reports of their requirement in the mekk1-mkk1/2-mpk4 death pathway. Similar with MEKK2, overexpression of CRCK3 caused dosage- and SUMM2-dependent cell death, and the transcripts of CRCK3 were up-regulated in mekk1, mkk1/2, and mpk4 MEKK2-induced cell death depends on CRCK3. Interestingly, CRCK3-induced cell death also depends on MEKK2, consistent with the biochemical data that MEKK2 complexes with CRCK3. Furthermore, the kinase activity of CRCK3 is essential, whereas the kinase activity of MEKK2 is dispensable, for triggering cell death. Our studies suggest that MEKK2 and CRCK3 exert concerted functions in the control of NLR SUMM2 activation and MEKK2 may play a structural role, rather than function as a kinase, in regulating CRCK3 protein stability.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 2/genetics , MAP Kinase Kinase Kinase 2/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Protein Stability , RNA Interference/physiology
20.
Transl Cancer Res ; 9(6): 4020-4027, 2020 Jun.
Article En | MEDLINE | ID: mdl-35117769

Microtubules exist in all eukaryotic cells and are one of the critical components that make up the cytoskeleton. Microtubules play a crucial role in supporting cell morphology, cell division, and material transport. Tubulin modulators can promote microtubule polymerization or cause microtubule depolymerization. The modulators interfere with the mitosis of cells and inhibit cell proliferation. Tubulin mainly has three binding domains, namely, paclitaxel, vinca and colchicine binding domains, which are the best targets for the development of anticancer drugs. Currently, drugs for tumor therapy have been developed for these three domains. However, due to its narrow therapeutic window, poor selectivity, and susceptibility to drug resistance, it has severely limited clinical applications. The method of combined medication, the change of administration method, the modification of compound structure, and the research and development of new targets have all changed the side effects of tubulin drugs to a certain extent. In this review, we briefly introduce a basic overview of tubulin and the main mechanism of anti-tumor. Secondly, we focus on the application of drugs which developed based on the three domains of tubulin to various cancers in various fields. Finally, we further provide the development progress of tubulin inhibitors currently in clinical trials.

...