Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 146
1.
Water Res ; 258: 121775, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38761596

Excessive sulfate levels in water bodies pose a dual threat to the ecological environment and human health. The microbial removal of sulfate encounters challenges, particularly in environments with high sulfate concentrations, where the gradual accumulation of sulfide hampers microbial activity. This study focuses on elucidating the mechanisms underlying the enhancement of microbial sulfate reduction in high-concentration sulfate wastewater through a comparative analysis of maifanite and zeolite biostimulants. The investigation reveals that zeolite primarily facilitates microbial growth by providing attachment sites, while maifanite augments sulfate-reducing bacteria (SRB) activity through the release of active substances such as Mo, Ca, and Cu. The addition of maifanite proves instrumental in enhancing microbial activity, manifesting as increased microbial load and protein production, augmented extracellular polymer generation, accelerated electron transfer, and facilitated microbial growth and biofilm formation. Noteworthy is the observation that the combined application of maifanite and zeolite exhibited a synergistic effect, resulting in a 167 % and 68 % increase in sulfate reduction rate compared to the utilization of maifanite (0.12 d-1) or zeolite (0.19 d-1) in isolation. Within this synergistic context, the relative abundance of Desulfobacteraceae reaches a peak of 15.4 %. The outcomes of this study corroborate the distinct promotion mechanisms of maifanite and zeolite in microbial sulfate reduction, offering novel insights into the application of maifanite in the context of high-concentration sulfate removal.


Sulfates , Wastewater , Zeolites , Sulfates/metabolism , Wastewater/chemistry , Zeolites/chemistry , Bacteria/metabolism , Oxidation-Reduction , Biofilms , Waste Disposal, Fluid/methods
2.
Sci Total Environ ; 928: 172248, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38582108

Ecological water replenishment (EWR) changes the recharge conditions, flow fields, and physicochemical properties of regional groundwater. However, the resulting impacts on mechanisms regulating the sources and transformation of groundwater nitrate remain unclear. This study investigated how EWR influences the sources and transformation processes of groundwater nitrate using an integrated approach of Water chemistry analysis and stable isotopes (δ15N-NO3- and δ18O-NO3-) along with microbial techniques. The results showed that groundwater NO3-N decreased from 12.98 ± 7.39 mg/L to 7.04 ± 8.52 mg/L after EWR. Water chemistry and isotopic characterization suggested that groundwater nitrate mainly originated from sewage and manure. The Bayesian isotope mixing model (MixSIAR) indicated that EWR increased the average contribution of sewage and manure sources to groundwater nitrate from 46 % to 61 %, whereas that of sources of chemical fertilizer decreased from 43 % to 21 %. Microbial community analysis revealed that EWR resulted in a substantial decrease in the relative abundance of Pseudomonas spp denitrificans, from 13.7 % to 0.6 %. Both water chemistry and microbial analysis indicated that EWR weakened denitrification and enhanced nitrification in groundwater. EWR increases the contribution of nitrate to groundwater by promoting the release of sewage and feces in the unsaturated zone. However, the dilution effect caused by EWR was stronger than the contribution of sewage and fecal sources to groundwater nitrate. As a result, EWR helped to reduce groundwater nitrate concentrations. This study showed the effectiveness of integrated isotope and microbial techniques for delineating the sources and transformations of groundwater nitrate influenced by EWR.


Environmental Monitoring , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Nitrates/analysis , Water Pollutants, Chemical/analysis , Denitrification , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Sewage/chemistry , Nitrification , Water Supply , Water Microbiology
3.
Chemosphere ; 352: 141368, 2024 Mar.
Article En | MEDLINE | ID: mdl-38316282

Ginkgo biloba extract (GBE) had several effects on the human body as one of the widely used phytopharmaceuticals, but it had no application in microbial enhancement in the environmental field. The study focused on the impact of GBE on denitrification specifically under neutral conditions. At the identified optimal addition ratio of 2% (v/v), the system exhibited a noteworthy increase in nitrate reduction rate (NRR) by 56.34%, elevating from 0.71 to 1.11 mg-N/(L·h). Moreover, the extraction of microbial extracellular polymeric substance (EPS) at this ratio revealed changes in the composition of EPS, the electron exchange capacity (EEC) was enhanced from 87.16 to 140.4 µmol/(g C), and the transfer impedance was reduced within the EPS. The flavin, fulvic acid (FA), and humic acid (HA) provided a π-electron conjugated structure for the denitrification system, enhancing extracellular electron transfer (EET) by stimulating carbon source metabolism. GBE also improved electron transfer system activity (ETSA) from 0.025 to 0.071 µL O2/(g·min·prot) and the content of NADH enhanced by 22.90% while significantly reducing the activation energy (Ea) by 85.6% in the denitrification process. The synergy of improving both intracellular and extracellular electron transfer, along with the reduction of Ea, notably amplified the initiation and reduction rates of the denitrification process. Additionally, GBE demonstrated suitability for denitrification across various pH levels, enhancing microbial resilience in alkaline conditions and promoting survival and proliferation. Overall, these findings open the door to potential applications of GBE as a natural additive in the environmental field to improve the efficiency of denitrification processes, which are essential for nitrogen removal in various environmental contexts.


Denitrification , Extracellular Polymeric Substance Matrix , Ginkgo Extract , Humans , Electrons , Plant Extracts , Nitrogen , Bioreactors
4.
Chemosphere ; 351: 141176, 2024 Mar.
Article En | MEDLINE | ID: mdl-38211783

Due to the extensive application of chromate in industry, chromium-contaminated water has emerged as a significant hidden danger that threatens human health and the safety of the ecological environment. The reduction of Cr(VI) to Cr(III) through microbial processes has become one of the most notable methods for remediating water polluted by chromium due to its economic efficiency and environmentally friendly nature. However, several issues persist in its practical application, such as low reduction rates, the need for additional nutrients, and challenges in solid-liquid separation. Therefore, there is a growing focus on seeking enhanced methods for Cr(VI) microbial reduction, which has become a key area of research. This review represents the initial effort to systematically classify and summarize the means of enhancing Cr(VI) microbial reduction. It categorizes the enhancement methods into two main approaches: microbial-based and multi-method combined enhancement, offering detailed explanations for their mechanisms. This research provides both inspiration and theoretical support for the practical implementation of the Cr(VI) microbial reduction method.


Chromium , Water , Humans , Oxidation-Reduction , Biodegradation, Environmental , Technology
5.
Environ Sci Pollut Res Int ; 30(50): 109691-109701, 2023 Oct.
Article En | MEDLINE | ID: mdl-37775639

Aniline detected in many industrial wastewater is a refractive organic pollutant with strong biological toxicity to aquatic organisms and humans. In this research, electrochemical oxidation process with Ti/RuO2 as the anode has been used to degrade aniline-containing wastewater on a laboratory scale. The influence of anode materials, electrolyte, NaCl concentration, current density, and aniline initial concentration on COD removal, ICE, and Ep were studied. The results showed that Cl- addition in the electrolyte is essential to promote aniline degradation efficiency and avoid the anode being passivated. Furthermore, decreasing the current density, increasing Cl- concentration, and initial aniline concentration are beneficial to increase current efficiency and reduce energy consumption. Although the addition of SO42- has a restriction on the active chlorine evolution process, the conductivity increased, which resulted in the reduction of energy consumption. At last, the aniline degradation mechanism in the presence of chloride ions was summed up and proposed based on the literature.


Wastewater , Water Pollutants, Chemical , Humans , Titanium/chemistry , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Electrodes , Aniline Compounds , Chlorides
6.
Chemosphere ; 338: 139408, 2023 Oct.
Article En | MEDLINE | ID: mdl-37419153

Nitrobenzene is a typical organic pollutant of petroleum pollutant, which is a synthetic chemical not found naturally in the environment. Nitrobenzene in environment can cause toxic liver disease and respiratory failure in humans. Electrochemical technology provides an effective and efficient method for degrading nitrobenzene. This study, the effects of process parameter (e.g., electrolyte solution type, electrolyte concentration, current density and pH) and distinct reaction pathways for electrochemical treatment of nitrobenzene were investigated. As a result, available chlorine dominates the electrochemical oxidation process compared with hydroxyl radical, thus the electrolyte of NaCl is more suitable for the degradation of nitrobenzene than that of Na2SO4. The concentration and the existence form of available chlorine were mainly controlled by electrolyte concentration, current density and pH, which directly affect the removal of nitrobenzene. Cyclic voltammetry and mass spectrometric analyses suggested that electrochemical degradation of nitrobenzene included two important ways. Firstly, single oxidation: nitrobenzene → other forms of aromatic compounds→ NO-x + organic acids + mineralization products. Secondly, coordination of reduction and oxidation: nitrobenzene → aniline→ N2 + NO-x + organic acid + mineralization products. The results of this study will encourage us to further understand the electrochemical degradation mechanism of nitrobenzene and develop the efficient processes for nitrobenzene treatment.


Environmental Pollutants , Water Pollutants, Chemical , Humans , Wastewater , Chlorine/analysis , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis , Oxidation-Reduction , Nitrobenzenes/chemistry , Electrolytes , Chlorides/analysis , Electrodes
7.
Sci Total Environ ; 870: 161834, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-36708832

Microbial techniques have been extensively used for the remediation of nitrate and V(V) co-contaminations, but the mechanisms of electron and substances transport and metabolism of co-contaminations under oligotrophic niche have been largely overlooked. This study quantified the electron transfer and consumption, substance transfer, and metabolic pathways in the nitrate and V(V) co-contamination system under oligotrophic condition to explore the underlying mechanisms by characterizing the products and elucidating conventional cognitive pathways. This study compared the composition of the precipitates under the conditions of sufficient and insufficient carbon sources using energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, and discovered the re-oxidation process of the already reduced V(IV). Electronic evidence for the re-oxidation process of V(IV) was also provided by electron transfer and quantitative analysis. Besides, this study found that the electron contribution ratio of NO3--N → NO2--N and V(V) → V(IV) reduction was 40.2:1. In addition, based on the functional prediction of PICRUSt 2, it was found that the utilization of intracellular reserve carbon source and enzymes in the transport chain were enhanced in oligotrophic microbiology niche. These results provide new insights into the stability of co-contamination reduction in oligotrophic microbiology niche and demonstrate a new mobilization pathway for V(V) in oligotrophic systems.


Nitrates , Vanadium , Vanadium/metabolism , Electrons , Electron Transport , Oxidation-Reduction
8.
Chemosphere ; 313: 137558, 2023 Feb.
Article En | MEDLINE | ID: mdl-36526144

Sodium humate (SH) is one of the derivatives humic substances, which can be utilized for heavy metal removal from water due to its containing plenty of functional groups. In this study, a double network hydrogel SH/polyacrylamide (SH/PAM) was synthesized by a simple free-radical polymerization and used for Cu2+ and Pb2+ removal from water. The adsorption process can be well described by Langmuir-Freundlich model, indicating that both physical and chemical adsorption were involved. X-ray photoelectron spectroscopy (XPS) characterization demonstrated that complexation was the main mechanism for the adsorption. Two-dimensional correlation analysis of FTIR (2D-FTIR-COS) results showed that the variation order of functional groups during Cu2+ and Pb2+ adsorption in the following order: COOH ≈ -CO > -OH > C-O and -COOH ≈ C-O > -CO > -OH, respectively. According to the density functional theory (DFT) calculation results, the O atom of SH in the COO- was the main adsorption site. Meanwhile, the adsorption energy of Pb2+ was more negative than that of Cu2+ and the orbital hybridization between O atom of SH and Pb2+ was denser than that of Cu2+, which suggested that SH/PAM had a stronger combining capacity for Pb2+ than Cu2+. Therefore, the adsorption capacity for Pb2+ was larger than Cu2+. Moreover, the removal efficiencies are 30.2% for Al, 98.79% for Cu, 99.0% for Fe, 17.2% for Mn, 93.4% for Pb, and 62.4% for Zn in actual acid mine drainage using 6 g L-1 adsorbent. Collectively, this study not only provided a new adsorbent for heavy metal removal but also explicated the mechanism of heavy metal removal by SH from molecule and electron perspective, which is helpful for the application of SH in the environmental field.


Metals, Heavy , Water Pollutants, Chemical , Lead , Hydrogels/chemistry , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Water , Adsorption
9.
Sci Total Environ ; 863: 160858, 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36526198

Sulfur-based autotrophic bioremediation is recognized as an environmentally-friendly and effective method for the treatment of Cr(VI) in groundwater. However, inorganic carbon (IC), especially IC-rich solid kitchen waste, has rarely been reported as an important factor in the autotrophic process. In China, kitchen waste containing IC is generated in large quantities, and in combination with Cr(VI) autotrophic treatment technology in groundwater can achieve a win-win situation. Herein, the efficiency of Cr(VI)-bioreduction coupling solid inorganic carbon (SIC) (e.g. marble, egg shell, oyster shell, and NSAD synthetic material) and liquid inorganic carbon (LIC) was compared for the first time. After 18 d incubation, there were significant differences in Cr(VI) reduction efficiency and microbial community between SIC-bioreactors and LIC-bioreactors. Higher electron transfer activity, greater bioavailability of organics, and multiple Cr(VI) reductases were detected in SIC-biosystems, which effectively promoted Cr(VI) energy metabolism and enzyme-mediated biological reduction. High-throughput 16S rRNA gene sequencing reveled multiple cooperative mechanism in different substrate biosystems. This study not only advances the understanding of SIC coupled with Cr(VI) autotrophic bioreduction, but also provides new insights for the treatment of solid kitchen waste and groundwater bioremediation.


Carbon , Chromium , Animals , RNA, Ribosomal, 16S , Oxidation-Reduction , Chromium/metabolism , Sulfur , Calcium Carbonate
10.
Sci Total Environ ; 839: 156343, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35654188

The coexistence of nitrate and V(V) in groundwater aquifers poses potential threats to ecological environment and public health. However, much remains to be elucidated about how the complex microbial community coupled nitrate and V(V) simultaneous bio-reduction with carbon source oxidation. For the first time, it was demonstrated that denitrification and V(V) bio-reduction occur by using corn straw as the sole carbon and energy source. Corn straw was proved to have efficient denitrification and V(V) bio-reduction performance in various environments, especially at V(V) concentrations of 100 mg/L for optimal V(V) reduction rate (19.25 mg/L·d) and at pH of 11 with the best nitrate reduction rate (3.12 d-1). In addition, an interesting phenomenon was found that the release of V(V) occurred when the carbon source was insufficient and the competitive electron acceptor (NO3--N) existed. Metagenomic analysis showed that the addition of corn straw increased the abundance of genes related to metal resistance, cytochrome and dimethyl sulfoxide, and increased the abundance of glycolytic process, which may play a vital role in facilitating the reduction of V(V). These findings can provide basic suggestions for improving the mechanism of V(V) reduction pathway and provide guidance for the remediation of groundwater polluted by nitrate and V(V).


Groundwater , Nitrates , Carbon/metabolism , Denitrification , Nitrates/metabolism , Nitrogen Oxides , Zea mays/metabolism
11.
Sci Total Environ ; 837: 155917, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35568175

To achieve economical and eco-friendly denitrification, rice husk-intensified cathode driving bioelectrochemical reactor (RCBER) was constructed with rice husk as solid-phase carbon source and microbial carrier. Results demonstrated that the application of current improved the utilization of rice husk and enhanced the denitrification, and the quenching of anodic hydroxyl radicals by rice husk also improved the microbial resistance to current. The highest nitrate removal rate as 0.34 mg-N/(L∙d), higher economic benefits, i.e., current efficiency as 31.6% and energy consumption as 2.43 kWh/g NO3--N, and the highest environmental benefit, i.e., hydrogenotrophic denitrification contribution as 37.9%, were obtained at 200 mA/m2. The best performance at 200 mA/m2 was related to its better microenvironment, such as lower accumulation of anodic by-products and higher bioavailability of rice husks, as well as higher microbial metabolic activity, such as stable extracellular polymeric substance, the maximum electron transport system activity as 11.63 ± 0.14 µg O2·g-1·min-1·mg protein-1 and the highest activity of nitrate reductase (3.15-fold that of control check). The application of current realized the coexistence of heterotrophic and hydrogenotrophic denitrifiers, and multiple functional bacteria such as anaerobic denitrifiers Flavobacterium, aerobic denitrifiers Comamonas, hydrogenotrophic denitrifiers Thermomonas and electron transfer-related Enterobacter coexisted at 200 mA/m2, thereby improving RCBER's adaptability to the complex microenvironment. This study provides the theoretical basis for realizing a win-win situation of environmental pollution remediation and agricultural waste disposal.


Groundwater , Oryza , Bioreactors , Denitrification , Electrodes , Extracellular Polymeric Substance Matrix/metabolism , Groundwater/chemistry , Nitrates/metabolism , Nitrogen Oxides , Oryza/metabolism
12.
Bioresour Technol ; 355: 127288, 2022 Jul.
Article En | MEDLINE | ID: mdl-35545208

Immobilization technology with low maintenance is a promising alternative to enhance nitrate removal from water. In this study, washing rice drainage (RWD) was immobilized by poly(vinyl alcohol)/sodium alginate (PVA/SA) to obtain RWD-PVA/SA gel beads as inoculum for denitrification. When initial nitrate concentration was 50 mg N/L, nitrate was effectively removed at rates of 50-600 mg/(L∙d) using acetate as carbon source (C/N = 1.25). Arrhenius activation energy (Ea) of nitrate oxidoreductase was 28.64 kJ/mol for the RWD-PVA/SA gel beads. Temporal and spatial variation in microbial community structures were revealed along with RWD storage and in the reactors by Illumina high-throughput sequencing technology. RWD-PVA/SA gel beads has a simple (operational taxonomic units (OTUs) ã€ˆ100). Dechloromonas, Pseudomonas, Flavobacterium and Acidovorax were the most four dominant genera in the denitrification reactors inoculated with RWD-PVA/SA gel beads. This study provides an inoculum for denitrification with high nitrate removal performance and simple microbial community structures.


Microbiota , Oryza , Alginates , Bioreactors/microbiology , Denitrification , Nitrates , Nitrogen Oxides , Polyvinyl Alcohol
13.
Chemosphere ; 297: 134107, 2022 Jun.
Article En | MEDLINE | ID: mdl-35271890

Polypyrrole-modified plastic-carbon (PET-PPy) composite was prepared by using high porosity plastic-carbon materials and a special doping mechanism of polypyrrole to remove nitrate from water to achieve waste recycling. As a result, PET-PPy-500 showed remarkable nitrate adsorption in both acidic and alkaline wastewater. The pseudo-second-order kinetic and Langmuir isotherm models were fit for the nitrate adsorption by PET-PPy-500, and the maximum adsorption capacity predicted by the Langmuir model was 10.04 mg NO3-N/g (45.18 mg NO3-/g) at 30 °C. The ion exchange and electrostatic attraction were the main mechanisms of removing NO3- by PET-PPy-500, which was demonstrated by the interface characterization and theoretical calculation. The doped ions (Cl-) and/or other anions produced by charge transfer interaction were the main exchange ions in the process of NO3- adsorption. The main binding sites in the electrostatic adsorption process were nitrogen-containing functional groups, which can be confirmed by the results of XPS and density functional theory (DFT). Furthermore, DFT results also showed that the adsorption of nitrate by PET-PPy was a spontaneous exothermic process, and the adsorption energy at the nitrogen site was the lowest. The findings of this study provide a feasible strategy for the advanced treatment of nitrate containing wastewater.


Polymers , Water Pollutants, Chemical , Adsorption , Carbon , Hydrogen-Ion Concentration , Kinetics , Nitrates , Nitrogen , Plastics , Polymers/chemistry , Pyrroles/chemistry , Wastewater , Water Pollutants, Chemical/analysis
14.
Water Res ; 212: 118144, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35124562

Hexavalent chromium (Cr(VI)) is one of the major concerns for water environment and human health due to its high toxicicity, while ferric sludge produced from Fenton processes is also a tough nut to crack. In this study, the synergetic impact of ferric sludge derived from the Fenton process on the bioreduction of Cr(VI) in biocathode microbial electrolysis cell was investigated for the first time. As a result, Cr(VI) reduction efficiency at biocathode increased by 1.1-2.6 times with 50 mg/L ferric sludge under different operation conditions. Besides, the Cr(VI) reduction enhancement decreased with the increase of pH and initial Cr(VI) concentration or increased with the increase of ferric sludge dosage. Correspondingly, relatively higher power density (1.027 W/m3 with 100 mg/L ferric sludge while 0.827 W/m3 for control) and lower activation energy and resistance were also observed. Besides, the presence of ferric sludge increased biomass protein (1.7 times higher with 100 mg/L ferric sludge) and cytochrome c (1.4 times higher with 100 mg/L ferric sludge). The evolution of microbial community structure for a higher abundance of Cr(VI) and Fe(III)-reducing microorganisms were exhibited, implying the enhancement of Cr(VI) reduction was due to the formation of Fe(II) from the reduction of ferric sludge. These findings provide insights and theoretical support for developing a viable biotechnology platform to realize waste treatment using waste.


Ferric Compounds , Sewage , Chromium , Electrolysis , Humans , Oxidation-Reduction
15.
J Hazard Mater ; 429: 128258, 2022 05 05.
Article En | MEDLINE | ID: mdl-35101762

Abundant lignocellulose waste is an ideal energy source for environmental bioremediation, but its recalcitrance to bioavailability makes this a challenging prospect. We hypothesized that the disruption of straw's recalcitrant structure by mechanochemical ball milling would enhance its availability for the simultaneous bioreduction of nitrate and Cr(VI). The results showed that the ball-milling process increased the quantity of water-soluble organic matter released from corn straw and changed the composition of organic matter by strongly disrupting its lignocellulose structure. The increase in ball-milling time increased the specific surface area of the straw and favored the adhesion of microorganisms on the straw surface, which enhanced the bioavailability of the energy in the straw. Substantially increased removal of NO3--N (206.47 ± 0.67 mg/g) and Cr(VI) (37.62 ± 0.09 mg/g) was achieved by using straw that was ball milled for 240 min, which validated that ball milling can improve the utilization efficiency of straw by microorganisms. Cellular and molecular biological analyses showed that ball-milled straw increased microbial energy metabolism and cellular activity related to the electron transport chain. This work offers a potential way to achieve the win-win goal of utilizing agricultural wastes and remediating environmental pollution.


Nitrates , Water Pollutants, Chemical , Chromium/analysis , Nitrates/analysis , Water Pollutants, Chemical/analysis , Zea mays
16.
Bioresour Technol ; 346: 126669, 2022 Feb.
Article En | MEDLINE | ID: mdl-34995779

Sulfur-based autotrophic denitrification (SAD) and pyrite-based autotrophic denitrification (PAD) are important technologies that address nitrate pollution, but high sulfate production and low denitrification efficiency, respectively, limit their application in engineering. A bio-denitrification reactor with sulfur and pyrite as filler materials was studied to remove NO3--N from nitrate contaminated water. At an influent NO3--N concentration of 50 mg/L, NO3--N removal efficiency of the sulfur/pyrite-based bioreactor was 99.2%, producing less NH4+-N and SO42- than the sulfur-based bioreactor, even after long-term operation. Denitrification performance was significantly related to environmental variable, especially dissolved oxygen. Proteobacteria and Epsilonbacteraeota were the predominant phyla in the sulfur/pyrite-based bioreactor, and fewer dissimilatory nitrate reductions to ammonia process-related bacteria were enriched compared to those in the sulfur-based bioreactor. Sulfur-pyrite bio-denitrification provides an efficient alternative method for treatment of nitrate contaminated water.


Ammonium Compounds , Epsilonproteobacteria , Autotrophic Processes , Bioreactors , Denitrification , Iron , Nitrates , Sulfates , Sulfides , Sulfur , Water
17.
J Environ Sci (China) ; 113: 219-230, 2022 Mar.
Article En | MEDLINE | ID: mdl-34963530

The discharge of slaughterhouse wastewater (SWW) is increasing and its wastewater has to be treated thoroughly to avoid the eutrophication. The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification (IX-AD) process was developed to advanced treat SWW after traditional secondary biological process. Compared with traditional sulfur oxidizing denitrification (SOD), this study found that IX-AD column showed: (1) stronger ability to resist NO3- pollution load, (2) lower SO42- productivity, and (3) higher microbial diversity and richness. Liaoning zeolites addition guaranteed not only the standard discharge of NH4+-N, but also the denitrification performance and effluent TN. Especially, when the ahead secondary biological treatment process run at the ultra-high load, NO3--N removal efficiency for IX-AD column was still ~100%, whereas only 64.2% for control SOD column. The corresponding average effluent TN concentrations for IX-AD and SOD columns were 5.89 and 65.55 mg/L, respectively. Therefore, IX-AD is a promising technology for advanced SWW treatment and should be widely researched and popularized.


Water Purification , Zeolites , Abattoirs , Autotrophic Processes , Bioreactors , Denitrification , Nitrates , Nitrogen , Oxidation-Reduction , Sulfur , Wastewater
18.
Chemosphere ; 288(Pt 2): 132476, 2022 Feb.
Article En | MEDLINE | ID: mdl-34634272

With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.


Groundwater , Microbiota , Chromium , Metagenomics , Nitrates
19.
J Hazard Mater ; 426: 128059, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-34920220

A new strategy that simultaneous use of KHCO3 activated biochar and nano-MgO incorporation for Pb2+ and Cd2+ removal from water was raised. After activating by KHCO3, the BC showed a higher surface area and could carry more MgO nanoparticles the BC owned. The synthesized MgO-K-BC had a large adsorption capacity for Pb2+ (1625.5 mg/g) and Cd2+ (480.8 mg/g). Multiple characterization and comparative test have been performed to demonstrate that ion-exchange, precipitation, and complexation are the main mechanisms for Pb2+ and Cd2+ removal by MgO-K-BC. In order to further explore the adsorption mechanism in-depth, the density functional theory (DFT) calculation combined with experimental results were performed. The O-top of MgO was the most stable adsorption site for Pb2+/Cd2+ adsorption compared with other adsorption sites (Mg-top, bridge, and hollow). In addition, the results of charge density maps and projected density of state (PDOS) showed that the overlap of electron cloud and orbits between MgO and Pb2+ were denser than Cd2+, indicating that MgO-K-BC had a stronger affinity for Pb2+ than Cd2+, so that, MgO-K-BC had a higher adsorption capacity for Pb2+ than Cd2+. This work provides a deep understand of the mechanism for heavy metals adsorption by metal oxide and a practical and theoretical guidance for adsorbent preparation with high adsorption ability for heavy metal.

20.
Article En | MEDLINE | ID: mdl-34335833

Isodon lophanthoides var. gerardianus (Benth.) H. Hara, a native medicinal plant produced chiefly across Southern China, is one of the mainstream varieties of Xihuangcao, which has long been applied in preventing and treating some common liver or gall diseases. Water-soluble total flavonoids (WSTF) extracted from folk herbal medicine have many pharmacological effects. The objective of the paper is to investigate the synergy of WSTF with 5-fluorouracil (5-FU) on HCC and the related mechanisms. Cells were exposed to WSTF alone or combination treatment with 5-FU. Then, in this study, we conducted cell viability test, cell cycle and clone forming test, apoptosis assay, reactive oxygen species (ROS), Western blotting, immunohistochemistry, and a xenograft tumor growth model for investigating the role of WSTF in HCC in vivo and in vitro. It was discovered that WSTF caused cell cycle arrest at the G0/G1 phase while increasing the ROS contents. The generation of ROS levels could cause cell apoptosis and inhibit colony formation. WSTF decreased the Bcl-2 level but promoted the Bax level. These showed the mitochondrial dependence of WSTF-mediated apoptosis. WSTF combined with 5-FU have a synergistic effect to significantly inhibit carcinogenicity in vivo and in vitro. The reduced ROS changed the synergy of WSTF with 5-FU. At last, WSTF inhibit the growth of HCC and promote the HCC sensitivity to 5-FU through ROS accumulation. WSTF-increased ROS levels may partially or completely contribute to enhanced toxicity. WSTF combined with 5-FU in HCC can play a synergistic effect when applied in the clinical setting.

...