Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Acta Pharmacol Sin ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684800

Ulcerative colitis (UC) is associated with changed dietary habits and mainly linked with the gut microbiota dysbiosis, necroptosis of epithelial cells, and mucosal ulcerations. Liver dysfunction and abnormal level of liver metabolism indices were identified in UC patients, suggesting a close interaction between gut and liver disorders. Methionine-choline deficient diet (MCD) has been shown to induce persistent alterations of gut microbiota and metabolome during hepatitis. In this study we further explored the disease phenotypes in UC patients and investigated whether MCD functioned as a trigger for UC susceptibility. After assessing 88 serum specimens from UC patients, we found significant liver dysfunction and dyslipidemia including abnormal ALT, AST, TG, TC, LDL-c and HDL-c. Liver dysfunction and dyslipidemia were confirmed in DSS-induced colitis mice. We fed mice with MCD for 14 days to cause mild liver damage, and then treated with DSS for 7 days. We found that MCD intake significantly exacerbated the pathogenesis of mucosal inflammation in DSS-induced acute, progressive, and chronic colitis, referring to promotion of mucosal ulcers, colon shortening, diarrhea, inflammatory immune cell infiltration, cytokines release, and abnormal activation of inflammatory macrophages in colon and liver specimens. Intraperitoneal injection of clodronate liposomes to globally delete macrophages dramatically compromised the pathogenesis of MCD-triggering colitis. In addition, MCD intake markedly changed the production pattern of short-chain fatty acids (SCFAs) in murine stools, colons, and livers. We demonstrated that MCD-induced colitis pathogenesis largely depended on the gut microbes and the disease phenotypes could be transmissible through fecal microbiota transplantation (FMT). In conclusion, this study supports the concept that intake of MCD predisposes to experimental colitis and enhances its pathogenesis via modulating gut microbes and macrophages in mice.

2.
Cell Death Discov ; 10(1): 152, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38521771

Acute lung injury (ALI) is an acute and progressive hypoxic respiratory failure that could progress to acute respiratory distress syndrome (ARDS) with a high mortality rate, thus immediate medical attention and supportive care are necessary. The pathophysiology of ALI is characterized by the disruption of the alveolar-capillary barrier and activation of neutrophils, leading to lung tissue damage. The receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising target for the treatment of multiple inflammatory diseases, but the role of RIPK1 in the ALI remains poorly understood. In this study, we aimed to figure out the pathological role of RIPK1 in ALI, especially in the pulmonary immune microenvironment involving neutrophils and endothelial cells. In vivo experiments showed that RIPK1 inhibitor protected against lipopolysaccharide (LPS)-induced lung injury in mouse models, with reduced neutrophils and monocytes infiltration in the lungs. Further studies demonstrated that, besides the inhibitory action on necroptosis, RIPK1 inhibitor directly suppressed reactive oxygen species (ROS) generation and inflammatory cytokines secretion from neutrophils. Furthermore, RIPK1 inhibition maintains the barrier function in TNF-α-primed vascular endothelial cells and prevents their activation induced by the supernatant from LPS-stimulated neutrophils. Mechanistically, the aforementioned effects of RIPK1 inhibitor are associated with the NF-κB signaling pathway, which is partially independent of necroptosis inhibition. These results provide new evidence that RIPK1 inhibitor directly regulates the function of neutrophils and endothelial cells, as well as interferes with the interactions between these two cell types, therefore contributing to a better understanding of RIPK1 in ALI and providing a potential avenue for future therapeutic interventions.

3.
Phytomedicine ; 125: 155343, 2024 Mar.
Article En | MEDLINE | ID: mdl-38290230

BACKGROUND: Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE: We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS: We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS: Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION: We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.


Glioblastoma , Hydroxybenzoates , Zika Virus Infection , Zika Virus , Animals , Infant, Newborn , Humans , Zika Virus Infection/drug therapy , Zika Virus Infection/metabolism , Zika Virus/physiology , Viral Envelope Proteins , Glioblastoma/drug therapy , Molecular Docking Simulation , Virus Replication , Cell Line
4.
Acta Pharmacol Sin ; 44(8): 1687-1700, 2023 Aug.
Article En | MEDLINE | ID: mdl-36964308

Aberrant NLRP3 activation has been implicated in the pathogenesis of numerous inflammation-associated diseases. However, no small molecular inhibitor that directly targets NLRP3 inflammasome has been approved so far. In this study, we show that Atranorin (C19H18O8), the secondary metabolites of lichen family, effectively prevents NLRP3 inflammasome activation in macrophages and dendritic cells. Mechanistically, Atranorin inhibits NLRP3 activation induced cytokine secretion and cell pyroptosis through binding to ASC protein directly and therefore restraining ASC oligomerization. The pharmacological effect of Atranorin is evaluated in NLRP3 inflammasome-driven disease models. Atranorin lowers serum IL-1ß and IL-18 levels in LPS induced mice acute inflammation model. Also, Atranorin protects against MSU crystal induced mice gouty arthritis model and lowers ankle IL-1ß level. Moreover, Atranorin ameliorates intestinal inflammation and epithelial barrier dysfunction in DSS induced mice ulcerative colitis and inhibits NLRP3 inflammasome activation in colon. Altogether, our study identifies Atranorin as a novel NLRP3 inhibitor that targets ASC protein and highlights the potential therapeutic effects of Atranorin in NLRP3 inflammasome-driven diseases including acute inflammation, gouty arthritis and ulcerative colitis.


Arthritis, Gouty , Colitis, Ulcerative , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL
5.
J Photochem Photobiol B ; 238: 112604, 2023 Jan.
Article En | MEDLINE | ID: mdl-36525776

Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 µM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.


Hemin , Skin Diseases , Mice , Animals , Hemin/pharmacology , Hemin/metabolism , Neutrophil Infiltration , Mice, Inbred C57BL , Skin/metabolism , Keratinocytes/metabolism , Apoptosis , Inflammation/metabolism , Ultraviolet Rays
6.
Antiviral Res ; 203: 105347, 2022 07.
Article En | MEDLINE | ID: mdl-35643150

Zika virus (ZIKV) is a flavivirus that causes severe neuropathology in newborns and adults. There is no ZIKV-specific treatment or preventative. Therefore, it is urgent to develop safe and effective anti-ZIKV agents. Hemin, an iron-binding porphyrin, has been authorized by FDA to treat acute porphyria since the 1970s. Here, we aim to evaluate the anti-ZIKV effect of hemin in SNB-19 cells (a human glioma cell line) and explore the underlying mechanism based on the virus life cycle and functions of the host cell. Our study found that hemin has a strong activity to protect SNB-19 cells from ZIKV infection presented by decreased expression of viral proteins and virus yield. Meanwhile, ZIKV infection caused STAT1/IRF1 signaling activation and induced inflammatory responses in SNB-19 cells, which was relieved by hemin treatment. HO-1 has been reported to be potently induced by hemin and play a broad-spectrum antiviral effect. Intriguingly, hemin could still exert anti-ZIKV activity upon HO-1 siRNA treatment. Then, we conducted a time-of-addition assay, the result indicated hemin works mainly by interfering with the virus entry process. Further experiments excluded the effects of hemin on AXL-dependent viral adsorption and clathrin-mediated endocytosis processes. Subsequently, by fluorescence spectroscopy studies, intracellular fusion assay and syncytia formation assay, we revealed that hemin acts on the process of virus-endosome fusion. This study elaborated that hemin could play anti-ZIKV activity by disrupting the virus-endosome fusion process and shed new light on developing novel agents against ZIKV infection.


Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , DNA Viruses , Endosomes , Hemin/pharmacology , Humans , Infant, Newborn , Vero Cells , Virus Internalization , Virus Replication , Zika Virus Infection/metabolism
7.
Acta Pharmacol Sin ; 43(2): 376-386, 2022 Feb.
Article En | MEDLINE | ID: mdl-33850274

Systemic sclerosis (SSc) is a life-threatening chronic connective tissue disease with the characteristics of skin fibrosis, vascular injury, and inflammatory infiltrations. Though inhibition of phosphodiesterase 4 (PDE4) has been turned out to be an effective strategy in suppressing inflammation through promoting the accumulation of intracellular cyclic adenosine monophosphate (cAMP), little is known about the functional modes of inhibiting PDE4 by apremilast on the process of SSc. The present research aimed to investigate the therapeutic effects and underlying mechanism of apremilast on SSc. Herein, we found that apremilast could markedly ameliorate the pathological manifestations of SSc, including skin dermal thickness, deposition of collagens, and increased expression of α-SMA. Further study demonstrated that apremilast suppressed the recruitment and activation of macrophages and T cells, along with the secretion of inflammatory cytokines, which accounted for the effects of apremilast on modulating the pro-fibrotic processes. Interestingly, apremilast could dose-dependently inhibit the activation of M1 and T cells in vitro through promoting the phosphorylation of CREB. In summary, our research suggested that inhibiting PDE4 by apremilast might provide a novel therapeutic option for clinical treatment of SSc patients.


Macrophages/drug effects , Phosphodiesterase 4 Inhibitors/pharmacology , Skin/drug effects , T-Lymphocytes/drug effects , Thalidomide/analogs & derivatives , Animals , Blotting, Western , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Female , Fibrosis , Flow Cytometry , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Skin/metabolism , Skin/pathology , T-Lymphocytes/metabolism , Thalidomide/pharmacology
8.
Acta Pharmacol Sin ; 43(8): 2055-2066, 2022 Aug.
Article En | MEDLINE | ID: mdl-34907359

Acute lung injury (ALI) is a common and devastating clinical disorder featured by excessive inflammatory responses. Stimulator of interferon genes (STING) is an indispensable molecule for regulating inflammation and immune response in multiple diseases, but the role of STING in the ALI pathogenesis is not well elucidated. In this study, we explored the molecular mechanisms of STING in regulating lipopolysaccharide (LPS)-induced lung injury. Mice were pretreated with a STING inhibitor C-176 (15, 30 mg/kg, i.p.) before LPS inhalation to induce ALI. We showed that LPS inhalation significantly increased STING expression in the lung tissues, whereas C-176 pretreatment dose-dependently suppressed the expression of STING, decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-12, and IL-1ß, and restrained the expression of chemokines and adhesion molecule vascular cell adhesion protein-1 (VCAM-1) in the lung tissues. Consistently, in vitro experiments conducted in TNF-α-stimulated HMEC-1cells (common and classic vascular endothelial cells) revealed that human STING inhibitor H-151 or STING siRNA downregulated the expression levels of adhesion molecule and chemokines in HMEC-1cells, accompanied by decreased adhesive ability and chemotaxis of immunocytes upon TNF-α stimulation. We further revealed that STING inhibitor H-151 or STING knockdown significantly decreased the phosphorylation of transcription factor STAT1, which subsequently influenced its binding to chemokine CCL2 and adhesive molecule VCAM-1 gene promoter. Collectively, STING inhibitor can alleviate LPS-induced ALI in mice by preventing vascular endothelial cells-mediated immune cell chemotaxis and adhesion, suggesting that STING may be a promising therapeutic target for the treatment of ALI.


Acute Lung Injury , Membrane Proteins , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Animals , Cell Adhesion , Chemokines/metabolism , Chemotaxis , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Lung/pathology , Membrane Proteins/antagonists & inhibitors , Mice , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects , Vascular Cell Adhesion Molecule-1/metabolism
9.
Acta Pharmacol Sin ; 39(10): 1633-1644, 2018 Oct.
Article En | MEDLINE | ID: mdl-29849131

Ulcerative colitis (UC) is a chronic, nonspecific inflammatory bowel disease (IBD) characterized by complicated and relapsing inflammation in the gastrointestinal tract. SM934 is a water-soluble artemisinin analogue that shows anti-inflammatory and immuno-regulatory effects. In this study, we investigated the effects of SM934 on UC both in vivo and in vitro. A mouse model of colitis was established in mice by oral administration of 5% dextran sulfate sodium (DSS). SM934 (3, 10 mg/kg per day, ig) was administered to the mice for 10 days. After the mice were sacrificed, colons, spleens and mesenteric lymph nodes (MLNs) were collected for analyses. We showed that SM934 administration restored DSS-induced body weight loss, colon shortening, injury and inflammation scores. Furthermore, SM934 administration significantly decreased the disease activity index (DAI), histopathological scores, and myeloperoxidase (MPO) activities in colonic tissues. Moreover, SM934 administration dose-dependently decreased the mRNA and protein levels of DSS-induced pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α), and the percentage of macrophages and neutrophils in colon tissues. The effects of SM934 on LPS-stimulated RAW 264.7 cells and THP-1-derived macrophages were examined in vitro. Treatment with SM934 (0.8, 8, 80 µmol/L) dose-dependently decreased the production of pro-inflammatory mediators in LPS-stimulated RAW264.7 cells and THP-1-derived macrophages via inhibiting activation of the NF-κB signaling. Our results reveal the protective effects of SM934 on DSS-induced colitis can be attributed to its suppressing effects on neutrophils and macrophages and its inhibitory role in the NF-κB signaling, suggests that SM934 might be a potential effective drug for ulcerative colitis.


Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Artemisinins/therapeutic use , Colitis, Ulcerative/drug therapy , Macrophages/drug effects , Neutrophils/drug effects , Animals , Colitis, Ulcerative/chemically induced , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate , Female , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
10.
Antiviral Res ; 125: 25-33, 2016 Jan.
Article En | MEDLINE | ID: mdl-26611395

During the hepatitis B virus (HBV) life cycle, nucleocapsid assembly is essential for HBV replication. Both RNA reverse transcription and DNA replication occur within the HBV nucleocapsid. HBV nucleocapsid is consisted of core protein (HBcAg), whose carboxy-terminal domain (CTD) contains an Arg-rich domain (ARD). The ARD of HBcAg does contribute to the encapsidation of pregenomic RNA (pgRNA). Previously, we reported a small-molecule, NZ-4, which dramatically reduced the HBV DNA level in an in vitro cell setting. Here, we explore the possible mechanisms by which NZ-4 inhibits HBV function. As an HBV inhibitor, NZ-4 leads to the formation of genome-free capsids, including a new population of capsid that runs faster on agarose gels. NZ-4's activity was dependent on the presence of the ARD I, containing at least one positively charged amino acid. NZ-4 might provide a new option for further development of HBV therapeutics for the treatment of chronic hepatitis B.


Capsid/drug effects , Capsid/metabolism , Hepatitis B virus/drug effects , Thiazoles/pharmacology , Amino Acid Sequence , Cell Line, Tumor , DNA, Viral/genetics , DNA, Viral/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Genome, Viral , Hep G2 Cells , Hepatitis B Core Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Virus Replication/drug effects
11.
Antimicrob Agents Chemother ; 59(11): 7061-72, 2015 Nov.
Article En | MEDLINE | ID: mdl-26349829

Here we first identified a novel pyridazinone derivative, compound 3711, as a nonnucleosidic hepatitis B virus (HBV) inhibitor in a cell model system. 3711 decreased extracellular HBV DNA levels by 50% (50% inhibitory concentration [IC50]) at 1.5 ± 0.2 µM and intracellular DNA levels at 1.9 ± 0.1 µM, which demonstrated antiviral activity at levels far below those associated with toxicity. Both the 3TC/ETV dually resistant L180M/M204I mutant and the adefovir (ADV)-resistant A181T/N236T mutant were as susceptible to 3711 as wild-type HBV. 3711 treatment induced the formation of genome-free capsids, a portion of which migrated faster on 1.8% native agarose gel. The induced genome-free capsids sedimented more slowly in isopycnic CsCl gradient centrifugation without significant morphological changes. 3711 treatment decreased levels of HBV DNA contained in both secreted enveloped virion and naked virus particles in supernatant. 3711 could interfere with capsid formation of the core protein (Cp) assembly domain. A Cp V124W mutant, which strengthens capsid interdimer interactions, recapitulated the effect of 3711 on capsid assembly. Pyridazinone derivative 3711, a novel chemical entity and HBV inhibitor, may provide a new opportunity to combat chronic HBV infection.


Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Virus Replication/drug effects , Capsid Proteins/metabolism , DNA, Viral/genetics , Drug Resistance, Viral
12.
Antiviral Res ; 107: 6-15, 2014 Jul.
Article En | MEDLINE | ID: mdl-24746457

Hepatitis B virus (HBV) belongs to the Hepadnaviridae family. HBsAg, greatly outnumbered mature virion, has been mysterious since the discovery of HBV. A novel benzimidazole derivative, BM601, is identified inhibiting the secretion of HBV virions and HBsAg, with 50% effective concentration of 0.6µM and 1.5µM, as well as 50% cytotoxicity concentration of 24.5µM. It has no effect on transcription, protein production, nucleocapsid formation or intracellular HBV DNA synthesis. Immunofluorescence analysis suggests that BM601 might inhibit virion and HBsAg secretion by interfering surface protein aggregation in trans Golgi apparatus. Furthermore, BM601 does not trigger cellular stress response or affect HBeAg or host protein secretion. We hypothesize that BM601 is a secretion inhibitor functioning at the level of virion and HBsAg secretion pathway.


Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Virus Assembly/drug effects , Antiviral Agents/isolation & purification , Antiviral Agents/toxicity , Benzimidazoles/isolation & purification , Benzimidazoles/toxicity , Cell Survival/drug effects , Humans , Protein Transport/drug effects
13.
Acta Pharmacol Sin ; 35(3): 410-8, 2014 Mar.
Article En | MEDLINE | ID: mdl-24487969

AIM: To investigate the action of isothiafludine (NZ-4), a derivative of bis-heterocycle tandem pairs from the natural product leucamide A, on the replication cycle of hepatitis B virus (HBV) in vitro and in vivo. METHODS: HBV replication cycle was monitored in HepG2.2.15 cells using qPCR, qRT-PCR, and Southern and Northern blotting. HBV protein expression and capsid assembly were detected using Western blotting and native agarose gel electrophoresis analysis. The interaction of pregenomic RNA (pgRNA) and the core protein was investigated by RNA immunoprecipitation. To evaluate the anti-HBV effect of NZ-4 in vivo, DHBV-infected ducks were orally administered NZ-4 (25, 50 or 100 mg·kg⁻¹·d⁻¹) for 15 d. RESULTS: NZ-4 suppressed intracellular HBV replication in HepG2.2.15 cells with an IC50 value of 1.33 µmol/L, whereas the compound inhibited the cell viability with an IC50 value of 50.4 µmol/L. Furthermore, NZ-4 was active against the replication of various drug-resistant HBV mutants, including 3TC/ETV-dual-resistant and ADV-resistant HBV mutants. NZ-4 (5, 10, 20 µmol/L) concentration-dependently reduced the encapsidated HBV pgRNA, resulting in the assembly of replication-deficient capsids in HepG2.2.15 cells. Oral administration of NZ-4 dose-dependently inhibited DHBV DNA replication in the DHBV-infected ducks. CONCLUSION: NZ-4 inhibits HBV replication by interfering with the interaction between pgRNA and HBcAg in the capsid assembly process, thus increasing the replication-deficient HBV capsids. Such mechanism of action might provide a new therapeutic strategy to combat HBV infection.


Antiviral Agents/pharmacology , Hepadnaviridae Infections/drug therapy , Hepatitis B Virus, Duck/drug effects , Hepatitis B virus/drug effects , Hepatitis, Viral, Animal/drug therapy , RNA, Viral/drug effects , Thiazoles/pharmacology , Virus Replication/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Viral/genetics , Ducks , Hep G2 Cells , Hepadnaviridae Infections/virology , Hepatitis B Virus, Duck/genetics , Hepatitis B Virus, Duck/growth & development , Hepatitis B virus/genetics , Hepatitis B virus/growth & development , Hepatitis, Viral, Animal/virology , Humans , Mutation , Nucleocapsid/metabolism , RNA, Viral/biosynthesis , Time Factors , Transfection
14.
Arch Pharm (Weinheim) ; 344(2): 78-83, 2011 Feb.
Article En | MEDLINE | ID: mdl-21290423

Recently, heterocyclic benzimidazole derivatives have been investigated and validated as a promising class of antiviral agents. In this paper, a series of novel thiazolylbenzimidazole derivatives was synthesized and evaluated for their anti-hepatitis B virus (HBV) activity and cytotoxicity on the HepG2.2.15 cell line. Afterwards, the preliminary structure-activity relationship (SAR) was discussed. Compound 8b, with IC(50) = 1.1 µM and SI > 90.9, was the most promising compound and could be selected as a benchmark compound for further investigation.


Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Hepatitis B virus/drug effects , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Cell Death/drug effects , Drug Screening Assays, Antitumor/methods , Hep G2 Cells/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests/methods , Molecular Structure , Structure-Activity Relationship
15.
Bioorg Med Chem ; 18(14): 5048-55, 2010 Jul 15.
Article En | MEDLINE | ID: mdl-20639110

A series of novel benzimidazole derivatives were synthesized and evaluated for their anti-hepatitis B virus (HBV) activity and cytotoxicity in the HepG2.2.15 cell line. The preliminary SAR was discussed. Compound 12a, with IC50<0.41 microM and SI>81.2, was the most promising compound and selected as the benchmark compound for further optimization.


Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Antiviral Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Humans , Structure-Activity Relationship
16.
Eur J Med Chem ; 42(11-12): 1358-64, 2007.
Article En | MEDLINE | ID: mdl-17499889

A series of 1-isopropylsulfonyl-2-amine benzimidazole derivatives were synthesized and evaluated for their anti-hepatitis B virus (HBV) activity and cytotoxicity in the HepG2.2.15 cell line. In general, these derivatives are potent HBV inhibitors (IC(50)<4 microM) with high selectivity indices (SIs>40). Compounds 5b-e, g, j, and 9a were among the most prominent compounds, with IC(50)s of 0.70-2.0 microM and SIs of 41-274. The potent anti-HBV activity and safety profiles of the most promising compounds 5d and j (IC(50)s=0.70 microM, SIs>120) demonstrate the potential of this series of benzimidazoles for the development of new anti-HBV drugs.


Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Hepatitis B virus/drug effects , Animals , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Cattle , Cell Death/drug effects , Cell Line, Tumor , DNA, Viral/biosynthesis , Hepatitis B virus/physiology , Humans , Inhibitory Concentration 50
17.
J Med Chem ; 49(15): 4790-4, 2006 Jul 27.
Article En | MEDLINE | ID: mdl-16854087

A series of novel benzimidazole derivatives was synthesized and evaluated for their anti-hepatitis B virus (HBV) activity and cytotoxicity in vitro. Strong activity against HBV replication and low cytotoxicity were generally observed in these benzimidazoles. The most promising compounds were 12a and 12b, with similar high antiviral potency (IC50 = 0.9 and 0.7 microM, respectively) and remarkable selectivity indices (>1111 and 714, respectively). They were selected for further evaluation as novel HBV inhibitors.


Antiviral Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Hepatitis B virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Line, Tumor , DNA, Viral/antagonists & inhibitors , Hepatitis B virus/genetics , Humans , Structure-Activity Relationship
...