Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 178
1.
PLoS One ; 19(5): e0304601, 2024.
Article En | MEDLINE | ID: mdl-38820310

Both clinical and animal studies demonstrated that seizure-induced respiratory arrest (S-IRA) contributes importantly to sudden unexpected death in epilepsy (SUDEP). It has been shown that enhancing serotonin (5-HT) function relieves S-IRA in animal models of SUDEP, including DBA/1 mice. Direct activation of 5-HT3 and 5-HT4 receptors suppresses S-IRA in DBA/1 mice, indicating that these receptors are involved in S-IRA. However, it remains unknown if other subtypes of 5-HT receptors are implicated in S-IRA in DBA/1 mice. In this study, we investigated the action of an agonist of the 5-HT1A (8-OH-DPAT), 5-HT2A (TCB-2), 5-HT2B (BW723C86), 5-HT2C (MK-212), 5-HT6 (WAY-208466) and 5-HT7 (LP-211) receptor on S-IRA in DBA/1 mice. An agonist of the 5-HT receptor or a vehicle was intraperitoneally administered 30 min prior to acoustic simulation, and the effect of each drug/vehicle on the incidence of S-IRA was videotaped for offline analysis. We found that the incidence of S-IRA was significantly reduced by TCB-2 at 10 mg/kg (30%, n = 10; p < 0.01, Fisher's exact test) but was not altered by other agonists compared with the corresponding vehicle controls in DBA/1 mice. Our data demonstrate that 5-HT2A receptors are implicated in S-IRA, and 5-HT1A, 5-HT2B, 5-HT2C, 5-HT6 and 5-HT7 receptors are not involved in S-IRA in DBA/1 mice.


Mice, Inbred DBA , Receptors, Serotonin , Seizures , Animals , Receptors, Serotonin/metabolism , Seizures/metabolism , Mice , Male , Serotonin Receptor Agonists/pharmacology , Sudden Unexpected Death in Epilepsy/etiology , Disease Models, Animal
2.
Pharmacol Res ; : 107244, 2024 May 29.
Article En | MEDLINE | ID: mdl-38821149

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.

3.
Environ Res ; : 119254, 2024 May 28.
Article En | MEDLINE | ID: mdl-38815715

In recent years, increasing demand for inland river water quality precision management has heightened the necessity for real-time, rapid, and continuous monitoring of water conditions. By analyzing the optical properties of water bodies remotely, unmanned aerial vehicle (UAV) hyperspectral imaging technology can assess water quality without direct contact, presenting a novel method for monitoring river conditions. However, there are currently some challenges to this technology that limit the promotion application of this technology, such as underdeveloped sensor calibration, atmospheric correction algorithms, and limitations in modeling non-water color parameters. This article evaluates the advantages and disadvantages of traditional sensor calibration methods and considers factors like sensor aging and adverse weather conditions that impact calibration accuracy. It suggests that future improvements should target hardware enhancements, refining models, and mitigating external interferences to ensure precise spectral data acquisition. Furthermore, the article summarizes the limitations of various traditional atmospheric correction methods, such as complex computational requirements and the need for multiple atmospheric parameters. It discusses the evolving trends in this technology and proposes streamlining atmospheric correction processes by simplifying input parameters and establishing adaptable correction algorithms. Simplifying these processes could significantly enhance the accuracy and feasibility of atmospheric correction. To address issues with the transferability of water quality inversion models regarding non-water color parameters and varying hydrological conditions, the article recommends exploring the physical relationships between spectral irradiance, solar zenith angle, and interactions with water constituents. By understanding these relationships, more accurate and transferable inversion models can be developed, improving the overall effectiveness of water quality assessment. By leveraging the sensitivity and versatility of hyperspectral sensors and integrating interdisciplinary approaches, a comprehensive database for water quality assessment can be established. This database enables rapid, real-time monitoring of non-water color parameters which offers valuable insights for the precision management of inland river water quality.

4.
Opt Express ; 32(7): 10741-10760, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38570941

Hyperspectral imaging is a critical tool for gathering spatial-spectral information in various scientific research fields. As a result of improvements in spectral reconstruction algorithms, significant progress has been made in reconstructing hyperspectral images from commonly acquired RGB images. However, due to the limited input, reconstructing spectral information from RGB images is ill-posed. Furthermore, conventional camera color filter arrays (CFA) are designed for human perception and are not optimal for spectral reconstruction. To increase the diversity of wavelength encoding, we propose to place broadband encoding filters in front of the RGB camera. In this condition, the spectral sensitivity of the imaging system is determined by the filters and the camera itself. To achieve an optimal encoding scheme, we use an end-to-end optimization framework to automatically design the filters' transmittance functions and optimize the weights of the spectral reconstruction network. Simulation experiments show that our proposed spectral reconstruction network has excellent spectral mapping capabilities. Additionally, our novel joint wavelength encoding imaging framework is superior to traditional RGB imaging systems. We develop the deeply learned filter and conduct actual shooting experiments. The spectral reconstruction results have an attractive spatial resolution and spectral accuracy.

5.
Epilepsia ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593237

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS: Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS: Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE: Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.

6.
Bioresour Technol ; 401: 130688, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604298

Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.


Bioreactors , Denitrification , Nitrates , Salinity , Wastewater , Wastewater/chemistry , Nitrates/metabolism , Water Purification/methods , Electricity , Pseudomonas/metabolism
7.
J Extracell Vesicles ; 13(4): e12426, 2024 Apr.
Article En | MEDLINE | ID: mdl-38532609

Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.


Extracellular Vesicles , Proton Pump Inhibitors , Endocytosis , Pinocytosis , Adenosine Triphosphatases
8.
Ying Yong Sheng Tai Xue Bao ; 35(2): 523-532, 2024 Feb.
Article En | MEDLINE | ID: mdl-38523111

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.


Ecosystem , Oxygen , Water Quality , Biodiversity , Eutrophication , Environmental Monitoring
9.
Opt Express ; 32(3): 3528-3550, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38297572

Image dehazing is a typical low-level visual task. With the continuous improvement of network performance and the introduction of various prior knowledge, the ability of image dehazing is becoming stronger. However, the existing dehazing methods have problems such as the inability to obtain real shooting datasets, unreliable dehazing processes, and the difficulty to deal with complex lighting scenes. To solve these problems, we propose a new haze model combining the optical scattering model and the computer graphics rendering. Based on the new haze model, we propose a high-quality and widely applicable dehazing dataset generation pipeline that does not require paired-data training and prior knowledge. We reconstruct the three-dimensional fog space with array camera and remove haze by thresholding voxel deletion. We use the Unreal Engine 5 to generate simulation datasets and the real shooting in laboratory to verify the effectiveness and the reliability of our generation pipeline. Through our pipeline, we can obtain wonderful dehaze results and dehaze datasets under various complex outdoors lighting conditions. We also propose a dehaze dataset enhancement method based on voxel control. Our pipeline and data enhancement are suitable for the latest algorithm model, these solutions can obtain better visual effects and objective indicators.

10.
Appl Microbiol Biotechnol ; 108(1): 120, 2024 Dec.
Article En | MEDLINE | ID: mdl-38212963

UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.


Genes, Bacterial , Thiamphenicol/analogs & derivatives , Wastewater , Anti-Bacterial Agents/pharmacology , DNA
11.
Eur Arch Otorhinolaryngol ; 281(4): 1857-1864, 2024 Apr.
Article En | MEDLINE | ID: mdl-38183455

OBJECTIVE: This study evaluated the swallowing and voice function of laryngeal cancer patients after Supracricoid Partial Laryngectomy(SCPL), and its influence on quality of life to provide a reference for the selection of surgical methods for laryngeal cancer patients. METHODS: Twenty-one patients who received SCPL between April 2015 and November 2021 were included. Each patient's swallowing function and quality of life were assessed through fiberoptic endoscopic examination of swallowing (FEES) and the M.D. Anderson Dysphagia Inventory (MDADI). Fundamental, jitter, shimmer, maximum phonation time (MPT), and voice handicap index-10 (VHI-10) were performed to assess voice function and voice-related quality of life. RESULTS: The results of the FEES of the 21 patients were as follows: the rates of pharyngeal residue after swallowing solid, semiliquid, and liquid food were 0%, 28.57%, and 38.09%, respectively; the rates of laryngeal infiltration after swallowing solid, semiliquid, and liquid food were 0%, 28.57%, and 4.76%, respectively; and aspiration did not occur in any of the patients. In the evaluation of swallowing quality of life, the mean total MDADI score was 92.6 ± 6.32. The voice function evaluation showed that the mean F0, jitter, shimmer, and MPT values were 156.01 ± 120.87 (HZ), 11.57 ± 6.21 (%), 35.37 ± 14.16 (%) and 7.85 ± 6.08 (s), respectively. The mean total VHI-10 score was 7.14 ± 4.84. CONCLUSION: SCPL provides patients with satisfactory swallowing and voice function. The patients in this study were satisfied with their quality of life in terms of swallowing and voice. SCPL can be used as a surgical method to preserve laryngeal function in patients with laryngeal cancer.


Laryngeal Neoplasms , Voice , Humans , Laryngectomy/adverse effects , Laryngectomy/methods , Deglutition , Laryngeal Neoplasms/surgery , Quality of Life
12.
Environ Pollut ; 342: 123125, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38081379

Composting is a traditional method of treating organic waste. A growing number of studies have been focusing on accelerating the process to achieve "rapid composting." However, the specific definition and influencing factors of rapid composting remain unclear. Therefore, we aimed to gather more insight into the features of rapid composting by reviewing the literature concerning organic waste composting published in the Web of Science database in the past 5 years. We selected 1615 sample studies with "composting" as the subject word and analyzed the effective composting time stated in each study. We defined rapid composting within 15 days using the median test and quartile method. Based on this definition, we summarized the influencing factors of "rapid composting," namely materials, reactors, temperature, and microorganisms. Finally, we summarized two mechanisms related to humus formation during organic waste rapid composting: high temperature-promoting maturation and microbial driving mechanisms. This literature review compiled useful references to help promote the development of rapid composting technology and related equipment.


Composting , Soil , Temperature
13.
Environ Res ; 241: 117641, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37972808

The presence of excessive concentrations of nitrate poses a threat to both the environment and human health, and the bioelectrochemical systems (BESs) are attractive green technologies for nitrate removal. However, the denitrification efficiency in the BESs is still limited by slow biofilm formation and nitrate removal. In this work, we demonstrate the efficacy of novel combination of magnetite nanoparticles (nano-Fe3O4) with the anode-cathode polarity period reversal (PPR-Fe3O4) for improving the performance of BESs. After only two-week cultivation, the highest cathodic current density (7.71 ± 1.01 A m-2) and NO3--N removal rate (8.19 ± 0.97 g m-2 d-1) reported to date were obtained in the PPR-Fe3O4 process (i.e., polarity period reversal with nano-Fe3O4 added) at applied working voltage of -0.2 and -0.5 V (vs Ag/AgCl) under bioanodic and biocathodic conditions, respectively. Compared with the polarity reversal once only process, the PPR process (i.e., polarity period reversal in the absence of nano-Fe3O4) enhanced bioelectroactivity through increasing biofilm biomass and altering microbial community structure. Nano-Fe3O4 could enhance extracellular electron transfer as a result of promoting the formation of extracellular polymers containing Fe3O4 and reducing charge transfer resistance of bioelectrodes. This work develops a novel biocathode denitrification strategy to achieve efficient nitrate removal after rapid cultivation.


Denitrification , Nitrates , Humans , Nitrates/chemistry , Electrodes
14.
Sci Total Environ ; 916: 169566, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38160823

Per- and polyfluoroalkyl substances (PFASs) have raised significant concerns within the realm of drinking water due to their widespread presence in various water sources. This prevalence poses potential risks to human health, ecosystems, and the safety of drinking water. However, there is currently a lack of comprehensive reviews that systematically categorize the distribution characteristics and transformation mechanisms of PFASs in drinking water sources. This review aims to address this gap by concentrating on the specific sources of PFASs contamination in Chinese drinking water supplies. It seeks to elucidate the migration and transformation processes of PFASs within each source, summarize the distribution patterns of PFASs in surface and subsurface drinking water sources, and analyze how PFASs molecular structure, solubility, and sediment physicochemical parameters influence their presence in both the water phase and sediment. Furthermore, this review assesses two natural pathways for PFASs degradation, namely photolysis and biodegradation. It places particular emphasis on understanding the degradation mechanisms and the factors that affect the breakdown of PFASs by microorganisms. The ultimate goal is to provide valuable insights for the prevention and control of PFAS contamination and the assurance of drinking water quality.


Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Ecosystem , Alkanesulfonic Acids/analysis
15.
Appl Opt ; 62(34): 9072-9081, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38108744

This paper proposes an optimized design of the Alvarez lens by utilizing a combination of three fifth-order X-Y polynomials. It can effectively minimize the curvature of the lens surface to meet the manufacturing requirements. The phase modulation function and aberration of the proposed lens are evaluated by using first-order optical analysis. Simulations compare the proposed lens with the traditional Alvarez lens in terms of surface curvature, zoom capability, and imaging quality. The results demonstrate the exceptional performance of the proposed lens, achieving a remarkable 26.36% reduction in the maximum curvature of the Alvarez lens (with a coefficient A value of 4×10-4 and a diameter of 26 mm) while preserving its original zoom capability and imaging quality.

16.
Opt Express ; 31(22): 35765-35776, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-38017741

Alvarez lenses are known for their ability to achieve a broad range of optical power adjustment by utilizing complementary freeform surfaces. However, these lenses suffer from optical aberrations, which restrict their potential applications. To address this issue, we propose a field of view (FOV) attention image restoration model for continuous zooming. In order to simulate the degradation of optical zooming systems based on Alvarez lenses (OZA), a baseline OZA is designed where the polynomial for the Alvarez lenses consists of only three coefficients. By computing spatially varying point spread functions (PSFs), we simulate the degraded images of multiple zoom configurations and conduct restoration experiments. The results demonstrate that our approach surpasses the compared methods in the restoration of degraded images across various zoom configurations while also exhibiting strong generalization capabilities under untrained configurations.

18.
Appl Opt ; 62(21): 5720-5726, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37707189

Dynamic distortion is one of the most critical factors affecting the experience of automotive augmented reality head-up displays (AR-HUDs). A wide range of views and the extensive display area result in extraordinarily complex distortions. Existing methods based on the neural network first obtain distorted images and then get the predistorted data for training mostly. This paper proposes a distortion prediction framework based on the neural network. It directly trains the network with the distorted data, realizing dynamic adaptation for AR-HUD distortion correction and avoiding errors in coordinate interpolation. Additionally, we predict the distortion offsets instead of the distortion coordinates and present a field of view (FOV)-weighted loss function based on the spatial-variance characteristic to further improve the prediction accuracy of distortion. Experiments show that our methods improve the prediction accuracy of AR-HUD dynamic distortion without increasing the network complexity or data processing overhead.

19.
Sci Total Environ ; 905: 167164, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37730069

As an important raw material for the synthesis of chemical and pharmaceutical, hazardous carcinogen p-chloronitrobenzene (p-CNB) has been widely found in high-salinity wastewater which need to be treated carefully. Due to the high-salinity shock on microorganisms, conventional microbial treatment technologies usually show poor effluent quality. This study initially investigated the p-CNB removal performance of microorganisms stimulated by 1.2 V low-voltage in high-salinity wastewater under facultative anaerobic conditions and further revealed the enhanced mechanisms. The results showed that the p-CNB removal kinetic parameter kp-CNB in the electrostimulating microorganism reactor (EMR) increased by 104.37 % to 155.30 % compared to the microorganism reactor (MR) as the control group under the varying salinities (0-45 g/L NaCl). The secretion of extracellular polymeric substances (EPS) in halotolerant microorganisms mainly enhanced by 1.2 V voltage stimulation ranging from 0 g/L NaCl to 30 g/L NaCl. Protein concentration ratio of EMR to MR in loosely bound EPS achieved maximum value of 1.77 at the salinity of 15 g/L NaCl, and the same ratio in tightly bound EPS also peaked at 1.39 under the salinity of 30 g/L NaCl. At the salinity of 45 g/L NaCl, 1.2 V voltage stimulation mainly enhanced salt-in strategy of halotolerant microorganisms, and the intracellular Na+ and K+ concentration ratio of EMR to MR reached maximum and minimum values of 0.65 and 1.92, respectively. Furthermore, the results of microbial metagenomic and metatranscriptomic analysis showed the halotolerant microorganisms Pseudomonas_A and Nitratireductor with p-CNB removal ability were enriched significantly under 1.2 V voltage stimulation. And the gene expression of p-CNB removal, salt-in strategy and betaine transporter were enhanced under voltage stimulation at varying salinities. Our investigation provided a new solution which combined with 1.2 V voltage stimulation and halotolerant microorganisms for the treatment of high-salinity wastewater.


Salinity , Wastewater , Salt Tolerance , Sodium Chloride , Bioreactors , Sewage/chemistry
20.
Sci Rep ; 13(1): 12978, 2023 08 10.
Article En | MEDLINE | ID: mdl-37563232

Homeobox A13 (HOXA13) has been verified as an oncogen in some malignancies. However, its role in nasopharyngeal carcinoma (NPC) is still unclear. This study aims to explore the role of HOXA13 in NPC and its underlying mechanism. The mRNA expression of HOXA13 in NPC was obtained from the GSE53819 and GSE64634 datasets in the Gene Expression Omnibus (GEO) database. MTT, colony formation and transwell assays and xenograft tumour models were used to investigate the effects of HOXA13 on NPC HNE1 cells in vitro and in vivo. The expression of HOXA13, epithelial-mesenchymal transition-transcription factor (EMT-TF) Snail and matrix metalloproteinase 2 (MMP-2) was detected by immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The results showed that HOXA13 was upregulated in NPC. Silencing HOXA13 suppressed the proliferation, migration, and invasion of HNE1 cells, which inhibited tumour growth, while overexpression of HOXA13 induced the opposite effects. In addition, the expression of Snail and MMP-2 at the transcriptional and protein levels was associated with the expression of HOXA13. In summary, our results suggest that HOXA13 plays a role as a cancer-promoting gene in NPC. The underlying mechanism may be related to the upregulation of Snail and MMP-2.


Carcinoma , Nasopharyngeal Neoplasms , Humans , Carcinoma/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Matrix Metalloproteinase 2/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology
...