Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Sci Total Environ ; 914: 170034, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38220015

To better understand the potential adverse health effects of atmospheric fine particles in the Southeast Asian developing countries, PM2.5 samples were collected at two urban sites in Yangon and Mandalay, representing coastal and inland cities in Myanmar, in winter and summer during 2016 and 2017. The concentrations of 21 polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were determined using a gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in PM2.5 in Yangon and Mandalay ranged from 7.6 to 180 ng m-3, with an average of 72 ng m-3. The PAHs were significantly higher in winter than in summer, and significantly higher in Mandalay than in Yangon. The health risk analysis of PAHs, based on the toxic equivalent quantity (TEQ) calculation, and the incremental lifetime cancer risk (ILCR) assessment indicated that PM2.5 in Myanmar has significant health risks with higher health risks in Mandalay compared to Yangon. Diagnostic ratios of PAHs, correlation of PAHs with other species in PM2.5 and the positive matrix factorization (PMF) analysis showed that TEQ is strongly affected by biomass burning and vehicular emissions in Myanmar. Additionally, it was found that the aging degree of aerosols and air mass trajectories had great influences on the concentration and composition of PAHs in PM2.5 in Myanmar, thereby affecting the toxicity of PM2.5.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Myanmar , Environmental Monitoring/methods , Risk Assessment , Seasons , China
2.
Sci Total Environ ; 900: 165717, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37482358

Nitrous acid (HONO) plays a significant role in radical cycling and atmospheric oxidative chemistry. While the source and evolution of HONO in the Yangtze River Delta (YRD) region of China after 2018 remains largely unknown, this work monitored HONO and other air pollutants throughout 2019 at an urban site (Pudong, PD) and a suburban site (Qingpu, QP) in Shanghai. Episodes with high HONO mixing ratios but different PM2.5 levels, namely haze and clean episodes, were chosen for HONO budget analysis. Using an observation-based photochemical box model, relative importance of different sources and sinks of HONO were evaluated. Gas-phase reaction of NO with OH was found to be one of the most important daytime HONO formation sources, especially during the QPhaze period (accounting for 40.3 % of daytime HONO formation). In particular, heterogeneous conversion of NO2 on ground and aerosol surface was found to be the dominant source for nocturnal HONO. Photo-enhanced NO2 conversion on ground surface plays an important role in daytime HONO production (19.4 % in PDhaze vs. 27.6 % in PDclean, and 19.8 % in QPhaze vs. 25.9 % in QPclean). In addition, photo-enhanced NO2 conversion at the aerosol surface during haze episodes made more significant contributions to HONO formation compared to the clean periods (20.9 % in PDhaze vs. 17.1 % in PDclean, and 19.7 % in QPhaze vs. 11.2 % in QPclean). The role of multiphase reactions was found to be increasingly important in HONO generation with enhanced relative humidity (RH) during daytime. Significant unknown HONO source was further analyzed and found to be positively related with photolytic as well as multiphase pathways. Overall, our study sheds light on the budget of HONO in one of the biggest megacities in east China, which would help developing future mitigation strategies for urban HONO and atmospheric oxidation capacity.

3.
Chem Biol Interact ; 382: 110604, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37315914

Ferroptosis, a newly identified iron-dependent form of cell death, has recently been implicated in the pathogenesis of Parkinson's disease (PD). Dl-3-n-butylphthalide (NBP) attenuates behavioral and cognitive deficits in animal models of PD. However, the potential of NBP to prevent dopaminergic neuron death by suppressing ferroptosis has rarely been explored. In this study, we aimed to investigate the effects of NBP on ferroptosis in erastin-induced dopaminergic neurons (MES23.5 cells) and the underlying mechanisms involved in these effects. Our results demonstrated that erastin significantly decreased viability of MES23.5 dopaminergic neurons in a dose-dependent manner, which was reversible by ferroptosis inhibitors. We further verified that NBP protected erastin-treated MES23.5 cells from death by inhibiting ferroptosis. Erastin increased the mitochondrial membrane density, caused lipid peroxidation, and decreased GPX4 expression in MES23.5 cells, which could be reversed by NBP preconditioning. NBP pretreatment suppressed erastin-induced labile iron accumulation and reactive oxygen species generation. Moreover, we demonstrated that erastin significantly reduced FTH expression, and pre-administration with NBP promoted Nrf2 translocation into the nucleus and increased the protein level of FTH. Additionally, the expression of LC3B-II in MES23.5 cells pretreated with NBP before administration of erastin was lower than that in cells treated with erastin alone. NBP reduced colocalization of FTH and autophagosomes in MES23.5 cells exposed to erastin. Finally, erastin gradually inhibited NCOA4 expression in a time-dependent manner, which was reversible by NBP pretreatment. Taken together, these results indicated that NBP suppressed ferroptosis via regulating FTH expression, which was achieved by promoting Nrf2 nuclear translocation and inhibiting NCOA4-mediated ferritinophagy. As such, NBP may be a promising therapeutic agent for the treatment of neurological diseases associated with ferroptosis.


Ferroptosis , Animals , Dopaminergic Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Iron/metabolism
4.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article En | MEDLINE | ID: mdl-36992017

The rapid development of the Internet of Things (IoT) has led to computational offloading at the edge; this is a promising paradigm for achieving intelligence everywhere. As offloading can lead to more traffic in cellular networks, cache technology is used to alleviate the channel burden. For example, a deep neural network (DNN)-based inference task requires a computation service that involves running libraries and parameters. Thus, caching the service package is necessary for repeatedly running DNN-based inference tasks. On the other hand, as the DNN parameters are usually trained in distribution, IoT devices need to fetch up-to-date parameters for inference task execution. In this work, we consider the joint optimization of computation offloading, service caching, and the AoI metric. We formulate a problem to minimize the weighted sum of the average completion delay, energy consumption, and allocated bandwidth. Then, we propose the AoI-aware service caching-assisted offloading framework (ASCO) to solve it, which consists of the method of Lagrange multipliers with the KKT condition-based offloading module (LMKO), the Lyapunov optimization-based learning and update control module (LLUC), and the Kuhn-Munkres (KM) algorithm-based channel-division fetching module (KCDF). The simulation results demonstrate that our ASCO framework achieves superior performance in regard to time overhead, energy consumption, and allocated bandwidth. It is verified that our ASCO framework not only benefits the individual task but also the global bandwidth allocation.

5.
Sci Total Environ ; 872: 162071, 2023 May 10.
Article En | MEDLINE | ID: mdl-36775179

Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.


Air Pollutants , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Biomass , Environmental Monitoring/methods , China , Seasons , Aerosols/analysis
6.
Sci Total Environ ; 839: 156280, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35644399

Black carbon (BC) and brown carbon (BrC) have intensive impacts on atmospheric visibility and global climate change. In this study, PM2.5 samples were collected at Pudong (PD) and Qingpu (QP) of Shanghai in 2017, and characterized typical organic molecular tracers by gas chromatography-mass spectrometer. The light absorption (Abs) of carbonaceous aerosol and water-soluble organic matter was analyzed by a multi-wavelength thermal/optical carbon analyzer and a long-range ultraviolet-visible spectrophotometer. An improved two-component model integrated with both optical and chemical fingerprints of carbonaceous aerosol was applied to analyze the Abs of BC, water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WISOC), with which the potential influencing factors including emission source and atmospheric aging were investigated. Results indicated that BrC contributed 19% at PD and 16% at QP of the total light absorption of the carbonaceous aerosol at 405 nm wavelength. Meanwhile, AbsWSOC(405)/AbsBrC(405) showed significant seasonal variations (27-50%) at both sites. Positive matrix factorization (PMF) analysis showed that vehicle emissions (60-61%) and biomass combustion (38-39%) were the major contributors to AbsBC(405), while biomass burning (34-40%), nitrate-relevant secondary processes (22-23%), vehicle emissions (18-19%) and biogenic SOA (13-19%) were major contributors to AbsWSOC(405). Hybrid combustion source (94-96%) had a predominant contribution to AbsWISOC(405). Statistical analysis showed that biomass burning had a great impact on the enhancement of AbsWISOC. Absorption Ångström exponent (AAE) and mass absorption efficiency (MAE) of each factor (source) using PMF analysis indicated that WSOC from combustion sources had higher AAEWSOC(350-550) values (8.11 and 8.29 for coal and biomass burning, respectively) and MAEWSOC(365) values (0.63-0.99) compared to other sources. Atmospheric aging process can lower the MAEWSOC(365) value (0.24-0.52). Overall, our study facilitates a better understanding of the relationships among source, optical properties, and atmospheric transformation processes of the carbonaceous aerosols in Shanghai.


Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring/methods , Particulate Matter/analysis , Soot/analysis , Vehicle Emissions/analysis , Water/chemistry
7.
Environ Pollut ; 306: 119420, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35526642

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 µg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 µg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 µg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.


Air Pollutants , Air Pollution , COVID-19 , Ozone , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Humans , Machine Learning , Nitrogen Dioxide/analysis , Ozone/analysis , Pandemics , Particulate Matter/analysis
8.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article En | MEDLINE | ID: mdl-35457012

MicroRNA (miRNA) acts as a critical regulator of growth in various human malignancies. However, the role of miRNA-3614 in the progression of human prostate cancer remains unknown. In this study, our results demonstrated that miRNA-3614-5p exerts a significant inhibitory effect on cell viability and colony formation and induces sub-G1 cell cycle arrest and apoptosis in human prostate cancer cells. Myeloid cell leukemia-1 (Mcl-1) acts as a master regulator of cell survival. Using the miRNA databases, miRNA-3614-5p was found to regulate Mcl-1 expression by targeting positions of the Mcl-1-3' UTR. The reduction of Mcl-1 expression by miRNA-3614-5p was further confirmed using an immunoblotting assay. Pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated by miRNA-3614-5p to generate cleaved caspase-3 (active caspase-3) and cleaved PARP (active PARP), accompanied by the inhibited Mcl-1 expression. These findings were the first to demonstrate the anti-growth effects of miRNA-3614-5p through downregulating Mcl-1 expression in human prostate cancer cells.


MicroRNAs , Prostatic Neoplasms , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Male , MicroRNAs/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Prostatic Neoplasms/metabolism
9.
Sci Total Environ ; 824: 153850, 2022 Jun 10.
Article En | MEDLINE | ID: mdl-35176377

To understand the influence of the energy structure (including solid fuel and clean energy) on air pollution, two comprehensive measurement campaigns were conducted in Baoding and Shanghai in late autumn and winter during 2017-2018. The chemical compositions, driving factors, regional transport of pollutants, and potential respiratory disease (RD) health risks of PM2.5 for Baoding and Shanghai were analyzed. The results showed that the concentration of PM2.5 in Baoding (156.9 ± 139.8 µg m-3) was 2.6 times of that in Shanghai (60.9 ± 45.9 µg m-3). The most important contributor to PM2.5 in Baoding was organic matter (OM), while inorganic aerosols accounted for major fractions of PM2.5 in Shanghai. Positive matrix factorization (PMF) results indicated that coal combustion (CC; 39%) accounted for the most in Baoding, followed by secondary aerosols (21%), biomass burning (BB; 20%), industrial emissions (14%), dust (3%), and vehicle exhaust (2%). However, the average contribution in Shanghai followed the order: secondary aerosols (44%), vehicle exhaust (36%), dust (11%), marine aerosols (6%), and BB (3%). The evolution of source contributions at different pollution levels revealed that haze episodes in Baoding and Shanghai were triggered by CC and secondary formation, respectively; however, the air quality on clean days in Baoding and Shanghai was affected mostly by BB and vehicle emissions, respectively. Potential source contribution function (PSCF) results suggested that CC in Baoding was primarily from local emissions, while BB was primarily from local and regional transport. Vehicle exhaust and secondary aerosols in Shanghai were mainly from local emissions and regional transport. The number of RD deaths related to haze episodes in Baoding and Shanghai were 215 (95% CI: 109, 319) and 76 (95% CI: 11, 135), respectively. This research also emphasized the importance of further attention to the usage of coal in Baoding and vehicle emissions in Shanghai.


Air Pollutants , Vehicle Emissions , Aerosols/analysis , Air Pollutants/analysis , China , Coal/analysis , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
10.
Environ Pollut ; 293: 118501, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34785283

Size-fractionated aerosol samples (PM0.25, PM0.25-1, PM1-2.5, and PM2.5-10) were collected in a highway tunnel in Shanghai, China. The concentrations of nonpolar organic compounds (NPOCs), i.e., n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and hopanes in the aerosol samples at the tunnel inlet and outlet, emission factors (EFs) of individual NPOCs in PM10, and EFs of size-fractionated individual NPOCs were analyzed comprehensively. NPOC concentrations in this tunnel were lower than the earlier tunnel results, which might be attributed to the tunnel configuration effect on the pollution dilution along the tunnel, in addition to the improvement of engine technology and fuel quality during past decades. n-Alkane homologs for C14-C35 exhibited a smooth hump-like distribution pattern with the most abundance at C22 and 1-2 carbon number shifts of Cmax in comparison to those in other tunnels due to different fleet and fuel compositions. The most abundant PAHs from diesel (e.g., Nap, Phe, Flu and Pyr) and gasoline (e.g., BghiF, BbkF, BeP, DBA and BghiP) vehicle emissions presented concentration increases of 1.8-5.8 times from the tunnel inlet to outlet. The individual n-alkane and PAH distributions exhibited obvious size dependence, while it was expected that the relative abundances and homolog distributions of hopanes were very similar for different size stages. Several diagnostic ratios, e.g., fossil/plant n-alkanes and LMW/HMW PAHs, were evidently size dependent, indicating different sources of size-fractionated n-alkanes and PAHs.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis
11.
Sci Total Environ ; 789: 148070, 2021 May 28.
Article En | MEDLINE | ID: mdl-34323831

Fine particulate matter (PM2.5)-bound nonpolar organic compounds (NPOCs), including polycyclic aromatic hydrocarbons (PAHs) and alkanes, are commonly used as typical molecular markers for detailed source identification. Online thermal desorption aerosol gas chromatography-mass spectrometry (TAG) system can obtain ambient data with hourly resolution, which is of great importance for investigating the diurnal characteristics and refined source identification of NPOCs. From June to October 2020, hourly ambient aerosol samples were collected and analyzed to investigate the characteristics and sources of 14 PAHs and 15 alkanes (C21-C35) in PM2.5 using TAG at a suburban site of Baoshan district in Shanghai, China. The average concentration of summed PAHs and alkanes during the sampling period was 1.27 ± 1.4 ng/m3 and 8.87 ± 3.46 ng/m3, respectively, in which Benzo[b]fluoranthene (BbF), Benzo[ghi]perylene (BghiP) and Indeno[1,2,3-cd]pyrene (IcdP) are the dominant PAHs species, with n-Heptacosane (C27), n-Nonacosane (C29) and n-Hentriacontane (C31) being the most abundant n-alkane species. Carbon preference index (CPI) and carbon maximum (Cmax) number indicated that the sources of alkanes shifted from biogenic-oriented (such as plant wax) in the summer to anthropogenic-dominated (such as fossil fuels) in the autumn. Results from trajectory cluster analysis and potential source contribution function (PSCF) modeling showed that alkanes were mainly from the middle and lower reaches of the Yangtze River Plain including Anhui, Jiangxi, and Zhejiang provinces, while PAHs were mainly from northeastern China. Positive Matrix Factorization (PMF) model results indicated that gasoline (41.48%) and diesel (21.82%) were the two major sources of PM2.5-bound PAHs in summer and fall of 2020 in Shanghai, followed by coal consumption or catering (19.96%) and biomass burning (16.74%). Diurnal variation of PAHs sources resolved by PMF showed characteristic features consistent with the corresponding anthropogenic activities. For example, gasoline vehicle exhaust showed higher concentrations during traffic rush hours; while coal consumption or catering presented higher concentrations during lunch times from 10:00 to 12:00. In addition, the TAG data coupling with PMF also can be capable for source appointment of short-duration episodes. Health risk assessment showed that adult women were at greater lifetime cancer risk (ILCR) than people in other age groups, and people may subject to higher health risks at morning and night time. This work demonstrates that hourly NPOCs measured by TAG are uniquely specific on refined source identification and investigation into the characteristics of diurnal variations.

12.
Environ Sci Pollut Res Int ; 28(1): 287-299, 2021 Jan.
Article En | MEDLINE | ID: mdl-32809125

Exposure to PM2.5 can cause adverse health outcomes. In this study, we analyzed PM2.5 samples collected from suburban and urban sites, including a traffic tunnel in Suzhou, China, for their physicochemical properties, endotoxin contents, and effects on HepG2 and A549 cells in vitro. The greatest cellular responses, including oxidative stress, cytotoxicity, genotoxicity, inflammatory, and transcriptional activation of stress-responsive genes (i.e., HSPA1A, GADD45α), were observed in cells treated with traffic tunnel PM2.5. Cytokine expression was also measured and closely correlated with endotoxin content, while other toxic effects were largely related to PM2.5-bound metals and polycyclic aromatic hydrocarbons (PAHs). These findings suggested that chemical and biological composition of PM2.5, including adsorbed trace metals, PAHs, and endotoxin, may contribute significantly to their toxicity. In addition to commonly used in vitro toxicity tests, HSPA1A and GADD45α promoter-driven luciferase reporter cells may provide a potential new tool for rapid screening and quantification of PM2.5 toxicity.


Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Endotoxins/analysis , Environmental Monitoring , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Seasons
13.
Int J Anal Chem ; 2020: 9571969, 2020.
Article En | MEDLINE | ID: mdl-32774380

Levoglucosan is a thermal decomposition product of cellulose in particulate matter. δ 13C value of levoglucosan could be used in studying the combustion mechanisms and chemical pathways. In order to introduce a minimum number of carbon atoms, based on the stereostructure of levoglucosan, a two-step derivatization method with methylboronic acid and MSTFA was developed and carefully optimized. The recommended reaction temperature is 70°C; the reaction time is 60 min for MBA and 120 min for MSTFA derivatization; and the molar ratio of levoglucosan : MBA : MSTFA is 1 : 1: 100 and 1 : 1: 120 and the reagent volume ratio of MSTFA : pyridine is between 1 : 3 and 1 : 4. The developed method achieved excellent reproducibility and high accuracy. The differences in the carbon isotopic compositions of the target boronate trimethysilylated derivative between the measured and calculated ranged from 0.09 to 0.36‰. The standard deviation of measured δ 13C value of levoglucosan was between 0.22 and 0.48‰. The method was applied to particle samples collected from the combustion of cellulose at four different temperatures. δ 13C values of levoglucosan in particle samples generated from a self-made combustion setup suggesting that combustion temperature play a little role on isotope fractionation of levoglucosan, although 13C enriched in levoglucosan during the combustion process.

14.
Huan Jing Ke Xue ; 40(6): 2510-2518, 2019 Jun 08.
Article Zh | MEDLINE | ID: mdl-31854640

Secondary species are one of the most important components of PM1 particles. To investigate the contributions as well as the factors that affect the formation of the secondary aerosols, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS, AMS) was employed to characterize sub-micron particles (PM1) during spring and summer in urban Shanghai. Organics were dominant in PM1 particles and comprised around 55% of the total PM1 mass concentration, followed by sulfate (24%) and nitrate (10%). Positive matrix factorization was further applied to explore the sources of the organics. It was found that primary and secondary organic aerosols accounted for around 34% and 66% of the total organics, respectively. Three episodes were observed during the measurements, where secondary species increased substantially. Increases of secondary species were represented by increases of sulfate and LV-OOA1 in spring, especially during the noontime, thus indicating that their formation is promoted by photochemical oxidation; yet in summer, photochemical and aqueous chemistry together accelerate the formation of secondary species, as indicated by the good correlations between nitrate and aerosol liquid water as well as between SOA and Ox. Overall, we found that contributions from secondary organic and inorganic aerosols to total PM1 particles were 35.5% and 43%, respectively. This study highlights that the influence of photochemical and aqueous chemistry is significant in the promotion of secondary species formation in Shanghai.

15.
Environ Sci Technol ; 53(15): 8664-8671, 2019 Aug 06.
Article En | MEDLINE | ID: mdl-31265258

The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to ∼40% of the total SOA budget during summertime. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a unique product from the OH-initiated oxidation of toluene in the presence of elevated NOx, was used as a tracer to back calculate the toluene SOA concentrations. By taking account for the effect of gas-particle partitioning processes on the fraction of DHOPA in the particle phase, the estimated toluene SOA concentrations agree within ∼33% with the estimates by the parametrization method. The agreement between these two independent approaches highlight the need to update current model frameworks with recent laboratory advances for a more accurate representation of SOA formation in regions with substantial anthropogenic emissions.


Air Pollutants , Toluene , Aerosols , China , Oxidation-Reduction , Photochemistry
16.
Chemosphere ; 234: 608-617, 2019 Nov.
Article En | MEDLINE | ID: mdl-31229722

Single particle aerosol mass spectrometry (SPAMS) and Cavity ring-down aerosol extinction albedo spectroscopy (CRD-EAS) were applied in this work to real-time investigate the chemical and physical characteristics of the homogeneous and heterogeneous reactions of O3 with pyrene in a Teflon reaction chamber. Suspended pyrene coated polystyrene latex spheres (PSLs) were generated by vaporization-condensation. Ozonation products and particle size distribution during the reactions were detected in real-time using a SPAMS instrument. Among these products, the peaks at m/z of 262 and 278, assigned to 4,5,9,10-dipyrenequinone and 1-hydroxy-4,5,9,10-dipyrenequinone, respectively, were first detected to our knowledge. The mechanism for the formation of reaction product was also proposed based on the real time monitoring. With increasing the ozone concentration, the size growth of the original pyrene-coated particles and the formation of new fine particles and size growth were observed continuously. The optical characteristics were also investigated using a laboratory-developed CRD-EAS instrument. The extinction and scattering coefficients were observed to increase approximately five and four times, respectively. The absorption coefficient also increased because more polar oxidation products coated on the particles exhibiting higher light absorption ability than pyrene, and meanwhile, the single scattering albedo reduced from 0.88 to 0.77 which indicated the reactions could cause positive climate forcing. Using the on-line mass spectrometry and optic spectroscopy instruments, a systematic analysis method was developed to characterize the chemical and physical properties of homogeneous and heterogeneous reactions in real-time, which will help to investigate and understand the formation of new particles and particle growth in the atmosphere.


Atmosphere/chemistry , Mass Spectrometry/methods , Ozone/chemistry , Pyrenes/chemistry , Spectrum Analysis/methods , Aerosols/analysis , Air Pollutants/analysis , Atmosphere/analysis , Particle Size , Polystyrenes/chemistry
17.
Toxicol In Vitro ; 54: 67-74, 2019 Feb.
Article En | MEDLINE | ID: mdl-30240709

After emitted from incomplete combustion of fossil fuels and biomass, ambient black carbon (BC) was then undergone photochemical oxidization processes in the air to form aged BC particles, also called oxidized BC (OBC). This study aimed to investigate the interactions between oxidative stress, autophagy and apoptosis induced by OBC in A549 cells and to explore associated molecular mechanisms. First, OBC could stimulate oxidative stress, autophagy and apoptosis dose-dependently, as evidenced by increased intercellular reactive oxygen species (ROS) levels, up-regulated autophagosome markers (light chain 3, LC3), and elevated apoptosis rate. Inhibitors of oxidative stress (N-acetylcysteine, NAC), autophagy (bafilomycin A1, Baf) and apoptosis (Z-DEVD-FMK) were used to investigate their interactions. NAC pretreatment could significantly reduce autophagy and apoptosis. Additionally, pretreatment with Baf or Z-DEVD-FMK could also significantly suppress the other two biological effects. Furthermore, OBC up regulated the expressions of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), phosphorylated protein kinase B (Akt) and mammalian target of rapamycin (mTOR). The Akt inhibitor (MK-2206) significantly reduced both autophagy and apoptosis. Taken together, dual-direction regulation existed between each two of oxidative stress, autophagy, and apoptosis in A549 cells exposed to OBC. In addition, the autophagy process is modulated by the PI3K/Akt pathway regardless of mTOR activity.


Carbon/toxicity , A549 Cells , Apoptosis/drug effects , Autophagy/drug effects , Humans , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
Inflammation ; 42(2): 702-713, 2019 Apr.
Article En | MEDLINE | ID: mdl-30430362

Vitamin D3 is reported to be involved in the regulation of inflammatory processes. In this study, biomarkers related to oxidative stress and inflammation were investigated to clarify the protective effects and possible mechanism of 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3) on PM2.5-induced inflammatory response. In the in vitro study using human bronchial epithelial (HBE) cells, aqueous extracts of PM2.5 could induce oxidative damage which is characterized by significant increases in production of reactive oxygen species, malonaldehyde concentration, and protein expression of HSPA1A and HO-1. Meanwhile, PM2.5 caused secretion of inflammatory factors (IL-6, IL-8) in the culture medium as well as phosphorylation of p38, nuclear factor-kappa B (NF-κB) inhibitor alpha (IκBα), and NF-κB p65 proteins. Increases in NLRP3 expression was also observed in HBE cells after PM2.5 exposure. However, all these biomarkers were remarkably attenuated by a 24-h pretreatment of 1 nM 1,25-(OH)2D3. Furthermore, 1,25-(OH)2D3 also reduced transcriptional activation of NF-κB induced by PM2.5 as indicated by a significant decrease in luciferase activity in HBE cells stably transfected with the NF-κB response element (RE)-driven luciferase reporter. Taken together, our findings provided novel experimental evidences supporting that vitamin D3 could reduce the predominantly oxidative stress-mediated inflammation induced by PM2.5via the p38/NF-κB/NLRP3 signaling pathway.


Inflammation/drug therapy , MAP Kinase Signaling System/drug effects , Oxidative Stress , Particulate Matter/toxicity , Vitamin D/analogs & derivatives , Biomarkers/analysis , Bronchi/cytology , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Inflammation/chemically induced , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protective Agents/pharmacology , Vitamin D/pharmacology , Vitamin D/therapeutic use
19.
Environ Sci Technol ; 52(24): 14216-14227, 2018 12 18.
Article En | MEDLINE | ID: mdl-30288976

An integrated source apportionment methodology is developed by amalgamating the receptor-oriented model (ROM) and source-oriented numerical simulations (SOM) together to eliminate the weaknesses of individual SA methods. This approach attempts to apportion and dissect the PM2.5 sources in the Yangtze River Delta region during winter. First, three ROM models (CMB, PMF, ME2) are applied and compared for the preliminary SA results, with information from PM2.5 sampling and lab analysis during the winter seasons. The detailed source category contribution of SOM to PM2.5 is further simulated using the WRF-CAMx model. The two pieces of information from both ROM and SOM are then stitched together to give a comprehensive information on the PM2.5 sources over the region. With the integrated approach, the detailed contributing sources of the ambient PM2.5 at different receptors including rural and urban, coastal and in-land, northern and southern receptors are analyzed. The results are compared with previous data and shows good agreement. This integrative approach is more comprehensive and is able to produce a more profound and detailed understanding between the sources and receptors, compared with single models.


Air Pollutants , Particulate Matter , China , Environmental Monitoring , Rivers
20.
Environ Sci Technol ; 52(21): 12934-12942, 2018 11 06.
Article En | MEDLINE | ID: mdl-30351037

Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.


Air Pollutants , Vehicle Emissions , Aerosols , Organic Chemicals , Ships , Volatilization
...