Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Cancer Res ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38861363

Colorectal cancer (CRC) is the second most common malignant tumor world-wide. Analysis of the changes that occur during CRC progression could provide insights into the molecular mechanisms driving CRC development and identify improved treatment strategies. Here, we performed an integrated multi-omics analysis of 435 trace-tumor-samples from 148 colorectal cancer (CRC) patients, covering non-tumor (NT), intraepithelial neoplasia (IEN), infiltration (IFT), and advanced-stage CRC (A-CRC) phases. Proteogenomics analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidation phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, occurred predominantly in the IEN and IFT phases, respectively, and impacted the cell cycle. Mutation of TP53 was frequent in the A-CRC phase and associated with tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of CRC based on CMS and CRIS classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of CRC based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided CRC. The AOM/DSS-induced CRC carcinogenesis mouse model in mice indicated that DDX5 deletion due to chr17q loss promoted CRC development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of CRC and identifying the potential therapeutic targets.

2.
J Hematol Oncol ; 17(1): 11, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491392

Immunotherapy is the first-line therapy for esophageal squamous cell carcinoma (ESCC), yet many patients do not respond due to drug resistance and the lack of reliable predictive markers. We collected 73 ESCC patients (including discovery cohort and validation cohort) without immune thrombocytopenia and undergoing anti-PD1 immunotherapy. Proteomic and phosphoproteomic analysis of 73 ESCC treatment-naive samples by mass spectrometry-based label-free quantification were applied to explore the potential resistant and sensitive mechanisms, and identify predictive markers of ESCC immunotherapy. Comparative analysis found the pathways related to immune and mitochondrial functions were associated with ESCC immunotherapy sensitivity; while platelet activation bioprocess showed negative correlation with CD8+ T cells and related to ESCC immunotherapy non-sensitivity. Finally, we identified 10 ESCC immunotherapy predictive biomarkers with high accuracy (≥ 0.90) to predict the immunotherapeutic response, which was validated in the independent cohort.


Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Proteomics , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Biomarkers , Immunotherapy
3.
Nat Commun ; 15(1): 980, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302471

Cetuximab therapy is the major treatment for colorectal cancer (CRC), but drug resistance limits its effectiveness. Here, we perform longitudinal and deep proteomic profiling of 641 plasma samples originated from 147 CRC patients (CRCs) undergoing cetuximab therapy with multi-course treatment, and 90 healthy controls (HCs). COL12A1, THBS2, S100A8, and S100A9 are screened as potential proteins to distinguish CRCs from HCs both in plasma and tissue validation cohorts. We identify the potential biomarkers (RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2) for the initial response prediction. In a longitudinal setting, we identify two clusters with distinct fluctuations and construct the model with high accuracy to predict the longitudinal response, further validated in the independent cohort. This study reveals the heterogeneity of different biomarkers for tumor diagnosis, the initial and longitudinal response prediction respectively in the first course and multi-course cetuximab treatment, may ultimately be useful in monitoring and intervention strategies for CRC.


Colorectal Neoplasms , Proteome , Humans , Cetuximab/therapeutic use , Proteome/metabolism , Biomarkers, Tumor/metabolism , Proteomics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology
4.
Gastroenterology ; 166(3): 450-465.e33, 2024 Mar.
Article En | MEDLINE | ID: mdl-37995868

BACKGROUND & AIMS: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract, and it has high metastatic and recurrence rates. We aimed to characterize the proteomic features of GIST to understand biological processes and treatment vulnerabilities. METHODS: Quantitative proteomics and phosphoproteomics analyses were performed on 193 patients with GIST to reveal the biological characteristics of GIST. Data-driven hypotheses were tested by performing functional experiments using both GIST cell lines and xenograft mouse models. RESULTS: Proteomic analysis revealed differences in the molecular features of GISTs from different locations or with different histological grades. MAPK7 was identified and functionally proved to be associated with tumor cell proliferation in GIST. Integrative analysis revealed that increased SQSTM1 expression inhibited the patient response to imatinib mesylate. Proteomics subtyping identified 4 clusters of tumors with different clinical and molecular attributes. Functional experiments confirmed the role of SRSF3 in promoting tumor cell proliferation and leading to poor prognosis. CONCLUSIONS: Our study provides a valuable data resource and highlights potential therapeutic approaches for GIST.


Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Humans , Animals , Mice , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Proteomics , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Serine-Arginine Splicing Factors
5.
Cell Rep Med ; 4(12): 101311, 2023 12 19.
Article En | MEDLINE | ID: mdl-38086380

Chemoradiation and targeted therapies are the major treatments for colorectal cancer (CRC); however, molecular properties associated with therapy resistance are incompletely characterized. Here, we profile the proteome of 254 tumor tissues from patients with CRC undergoing chemotherapy, chemoradiation, or chemotherapy combined with targeted therapy. Proteome-based classification reveals four subtypes featured with distinct biological and therapeutic characteristics. The integrative analysis of CRC cell lines and clinical samples indicates that immune regulation is significantly associated with drug sensitivity. HSF1 can increase DNA damage repair and cell cycle, thus inducing resistance to radiation, while high expression of HDAC6 is negatively associated with response of cetuximab. Furthermore, we develop prognostic models with high accuracy to predict the therapeutic response, further validated by parallel reaction monitoring (PRM) assay in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemoradiation and targeted therapy in CRC.


Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Proteomics , Proteome , Cetuximab/pharmacology , Cetuximab/therapeutic use , Prognosis
6.
Nat Commun ; 14(1): 5670, 2023 09 13.
Article En | MEDLINE | ID: mdl-37704624

The progression of urothelial bladder cancer (UC) is a complicated multi-step process. We perform a comprehensive multi-omics analysis of 448 samples from 190 UC patients, covering the whole spectrum of disease stages and grades. Proteogenomic integration analysis indicates the mutations of HRAS regulated mTOR signaling to form urothelial papilloma rather than papillary urothelial cancer (PUC). DNA damage is a key signaling pathway in the progression of carcinoma in situ (CIS) and related to APOBEC signature. Glucolipid metabolism increase and lower immune cell infiltration are associated with PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis and molecular features. Additionally, loss of RBPMS, associated with CIS-derived tumors, is validated to increase the activity of AP-1 and promote metastasis. This study reveals the characteristics of two distinct branches (PUC and CIS) of UC progression and may eventually benefit clinical practice.


Carcinoma in Situ , Carcinoma, Papillary , Carcinoma, Transitional Cell , Proteogenomics , Urinary Bladder Neoplasms , Humans , Proteomics , Urinary Bladder Neoplasms/genetics , Carcinoma, Papillary/genetics
8.
Cell Rep Med ; 4(9): 101166, 2023 09 19.
Article En | MEDLINE | ID: mdl-37633276

Upper tract urothelial carcinoma (UTUC) is often diagnosed late and exhibits poor prognosis. Limited data are available on potential non-invasive biomarkers for disease monitoring. Here, we investigate the proteomic profile of plasma in 362 UTUC patients and 239 healthy controls. We present an integrated tissue-plasma proteomic approach to infer the signature proteins for identifying patients with muscle-invasive UTUC. We discover a protein panel that reflects lymph node metastasis, which is of interest in identifying UTUC patients with high risk and poor prognosis. We also identify a ten-protein classifier and establish a progression clock predicting progression-free survival of UTUC patients. Finally, we further validate the signature proteins by parallel reaction monitoring assay in an independent cohort. Collectively, this study portrays the plasma proteomic landscape of a UTUC cohort and provides a valuable resource for further biological and diagnostic research in UTUC.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/diagnosis , Proteomics , Lymphatic Metastasis , Muscles
9.
Nat Commun ; 14(1): 4274, 2023 07 17.
Article En | MEDLINE | ID: mdl-37460463

The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis. The proteomic and phosphoproteomic analysis further highlights the responsibility of mTOR signaling for non-response to Sunitinib. Immune landscape characterization reveals diverse tumor microenvironment subsets in ccRCC. Finally, we construct a multi-omics classifier that can detect responder and non-responder patients (receiver operating characteristic-area under the curve, 0.98). Our study highlights associations between ccRCC molecular characteristics and the response to TKI, which can facilitate future improvement of therapeutic responses.


Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Sunitinib/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proteomics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/genetics , Tumor Microenvironment
10.
BMC Geriatr ; 23(1): 382, 2023 06 21.
Article En | MEDLINE | ID: mdl-37344765

BACKGROUND AND OBJECTIVE: The pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus (iNPH) remain unclear. Homocysteine may reduce the compliance of intracranial arteries and damage the endothelial function of the blood-brain barrier (BBB), which may be the underlying mechanism of iNPH. The overlap cases between deep perforating arteriopathy (DPA) and iNPH were not rare for the shared risk factors. We aimed to investigate the relationship between serum homocysteine and iNPH in DPA. METHODS: A total of 41 DPA patients with iNPH and 49 DPA patients without iNPH were included. Demographic characteristics, vascular risk factors, laboratory results, and neuroimaging data were collected. Multivariable logistic regression analysis was performed to investigate the relationship between serum homocysteine and iNPH in DPA patients. RESULTS: Patients with iNPH had significantly higher homocysteine levels than those without iNPH (median, 16.34 mmol/L versus 14.28 mmol/L; P = 0.002). There was no significant difference in CSVD burden scores between patients with iNPH and patients without iNPH. Univariate logistic regression analysis demonstrated that patients with homocysteine levels in the Tertile3 were more likely to have iNPH than those in the Tertile1 (OR, 4.929; 95% CI, 1.612-15.071; P = 0.005). The association remained significant after multivariable adjustment for potential confounders, including age, male, hypertension, diabetes mellitus, atherosclerotic cardiovascular disease (ASCVD) or hypercholesterolemia, and eGFR level. CONCLUSION: Our study indicated that high serum homocysteine levels were independently associated with iNPH in DPA. However, further research is needed to determine the predictive value of homocysteine and to confirm the underlying mechanism between homocysteine and iNPH.


Hydrocephalus, Normal Pressure , Vascular Diseases , Humans , Male , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/complications , Cross-Sectional Studies , Vascular Diseases/complications , Risk Factors , Neuroimaging
11.
Nat Commun ; 14(1): 1751, 2023 03 29.
Article En | MEDLINE | ID: mdl-36991000

The subtypes of duodenal cancer (DC) are complicated and the carcinogenesis process is not well characterized. We present comprehensive characterization of 438 samples from 156 DC patients, covering 2 major and 5 rare subtypes. Proteogenomics reveals LYN amplification at the chromosome 8q gain functioned in the transmit from intraepithelial neoplasia phase to infiltration tumor phase via MAPK signaling, and illustrates the DST mutation improves mTOR signaling in the duodenal adenocarcinoma stage. Proteome-based analysis elucidates stage-specific molecular characterizations and carcinogenesis tracks, and defines the cancer-driving waves of the adenocarcinoma and Brunner's gland subtypes. The drug-targetable alanyl-tRNA synthetase (AARS1) in the high tumor mutation burden/immune infiltration is significantly enhanced in DC progression, and catalyzes the lysine-alanylation of poly-ADP-ribose polymerases (PARP1), which decreases the apoptosis of cancer cells, eventually promoting cell proliferation and tumorigenesis. We assess the proteogenomic landscape of early DC, and provide insights into the molecular features corresponding therapeutic targets.


Adenocarcinoma , Brunner Glands , Duodenal Neoplasms , Proteogenomics , Humans , Duodenal Neoplasms/pathology , Brunner Glands/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology
12.
Nat Commun ; 14(1): 1666, 2023 03 25.
Article En | MEDLINE | ID: mdl-36966136

Esophageal squamous cell carcinoma (ESCC) is malignant while the carcinogenesis is still unclear. Here, we perform a comprehensive multi-omics analysis of 786 trace-tumor-samples from 154 ESCC patients, covering 9 histopathological stages and 3 phases. Proteogenomics elucidates cancer-driving waves in ESCC progression, and reveals the molecular characterization of alcohol drinking habit associated signatures. We discover chromosome 3q gain functions in the transmit from nontumor to intraepithelial neoplasia phases, and find TP53 mutation enhances DNA replication in intraepithelial neoplasia phase. The mutations of AKAP9 and MCAF1 upregulate glycolysis and Wnt signaling, respectively, in advanced-stage ESCC phase. Six major tracks related to different clinical features during ESCC progression are identified, which is validated by an independent cohort with another 256 samples. Hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) is considered as a drug target in ESCC progression. This study provides insight into the understanding of ESCC molecular mechanism and the development of therapeutic targets.


Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Proteogenomics , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Carcinoma, Squamous Cell/genetics , Mutation
13.
Nat Commun ; 14(1): 505, 2023 01 31.
Article En | MEDLINE | ID: mdl-36720864

Diffuse gliomas are devastating brain tumors. Here, we perform a proteogenomic profiling of 213 retrospectively collected glioma tumors. Proteogenomic analysis reveals the downstream biological events leading by EGFR-, IDH1-, TP53-mutations. The comparative analysis illustrates the distinctive features of GBMs and LGGs, indicating CDK2 inhibitor might serve as a promising drug target for GBMs. Further proteogenomic integrative analysis combined with functional experiments highlight the cis-effect of EGFR alterations might lead to glioma tumor cell proliferation through ERK5 medicates nucleotide synthesis process. Proteome-based stratification of gliomas defines 3 proteomic subgroups (S-Ne, S-Pf, S-Im), which could serve as a complement to WHO subtypes, and would provide the essential framework for the utilization of specific targeted therapies for particular glioma subtypes. Immune clustering identifies three immune subtypes with distinctive immune cell types. Further analysis reveals higher EGFR alteration frequencies accounts for elevation of immune check point protein: PD-L1 and CD70 in T-cell infiltrated tumors.


Glioma , Proteogenomics , Humans , Proteomics , Retrospective Studies , Glioma/genetics , ErbB Receptors/genetics
14.
Hepatology ; 77(2): 411-429, 2023 02 01.
Article En | MEDLINE | ID: mdl-35716043

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities. APPROACH AND RESULTS: Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism. CONCLUSIONS: We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.


Bile Duct Neoplasms , Cholangiocarcinoma , Proteogenomics , Humans , Proteomics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Tumor Microenvironment , Carrier Proteins , RNA-Binding Proteins
15.
Nat Commun ; 13(1): 7494, 2022 12 05.
Article En | MEDLINE | ID: mdl-36470859

Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.


Carcinoma, Renal Cell , Kidney Neoplasms , Microphthalmos , Proteogenomics , Humans , Carcinoma, Renal Cell/pathology , Transcription Factors/genetics , Microphthalmos/genetics , Proteomics , Kidney Neoplasms/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Translocation, Genetic
17.
J Hematol Oncol ; 15(1): 168, 2022 11 25.
Article En | MEDLINE | ID: mdl-36434634

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis. Proteogenomic characterization and integrative proteomic analysis provide a functional context to annotate genomic abnormalities with prognostic value. METHODS: We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 217 PDAC tumors with paired non-tumor adjacent tissues. In vivo functional experiments were performed to further illustrate the biological events related to PDAC tumorigenesis and progression. RESULTS: A comprehensive proteogenomic landscape revealed that TP53 mutations upregulated the CDK4-mediated cell proliferation process and led to poor prognosis in younger patients. Integrative multi-omics analysis illustrated the proteomic and phosphoproteomic alteration led by genomic alterations such as KRAS mutations and ADAM9 amplification of PDAC tumorigenesis. Proteogenomic analysis combined with in vivo experiments revealed that the higher amplification frequency of ADAM9 (8p11.22) could drive PDAC metastasis, though downregulating adhesion junction and upregulating WNT signaling pathway. Proteome-based stratification of PDAC revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Immune clustering defined a metabolic tumor subset that harbored FH amplicons led to better prognosis. Functional experiments revealed the role of FH in altering tumor glycolysis and in impacting PDAC tumor microenvironments. Experiments utilizing both in vivo and in vitro assay proved that loss of HOGA1 promoted the tumor growth via activating LARP7-CDK1 pathway. CONCLUSIONS: This proteogenomic dataset provided a valuable resource for researchers and clinicians seeking for better understanding and treatment of PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proteogenomics , Humans , Proteomics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Tumor Microenvironment , Membrane Proteins , ADAM Proteins , Ribonucleoproteins , Pancreatic Neoplasms
18.
Cell Res ; 32(12): 1047-1067, 2022 12.
Article En | MEDLINE | ID: mdl-36307579

Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined. Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients. Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1 lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion, and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology and suggests novel therapeutic targets and strategies.


Neuroendocrine Tumors , Pituitary Neoplasms , Proteogenomics , Humans , Neuroendocrine Tumors/genetics , Pituitary Neoplasms/genetics , Transcriptome/genetics , Epithelial-Mesenchymal Transition
19.
Nat Commun ; 13(1): 5723, 2022 09 29.
Article En | MEDLINE | ID: mdl-36175412

Chemotherapy and targeted therapy are the major treatments for gastric cancer (GC), but drug resistance limits its effectiveness. Here, we profile the proteome of 206 tumor tissues from patients with GC undergoing either chemotherapy or anti-HER2-based therapy. Proteome-based classification reveals four subtypes (G-I-G-IV) related to different clinical and molecular features. MSI-sig high GC patients benefit from docetaxel combination treatment, accompanied by anticancer immune response. Further study reveals patients with high T cell receptor signaling respond to anti-HER2-based therapy; while activation of extracellular matrix/PI3K-AKT pathway impair anti-tumor effect of trastuzumab. We observe CTSE functions as a cell intrinsic enhancer of chemosensitivity of docetaxel, whereas TKTL1 functions as an attenuator. Finally, we develop prognostic models with high accuracy to predict therapeutic response, further validated in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemotherapy and targeted therapy in GC.


Proteomics , Stomach Neoplasms , Docetaxel/therapeutic use , Humans , Phosphatidylinositol 3-Kinases , Proteome , Proto-Oncogene Proteins c-akt , Receptors, Antigen, T-Cell , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Transketolase , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
20.
Cells ; 11(15)2022 08 02.
Article En | MEDLINE | ID: mdl-35954225

Ribosomes within a cell are commonly viewed as biochemically homogenous RNA-protein super-complexes performing identical functions of protein synthesis. However, recent evidence suggests that ribosomes may be a more dynamic macromolecular complex with specialized roles. Here, we present extensive genetic and molecular evidence in the fission yeast S. pombe that the paralogous genes for many ribosomal proteins (RPs) are functionally different, despite that they encode the same ribosomal component, often with only subtle differences in the sequences. Focusing on the rps8 paralog gene deletions rps801d and rps802d, we showed that the mutant cells differ in the level of Rpl42p in actively translating ribosomes and that their phenotypic differences reside in the Rpl42p level variation instead of the subtle protein sequence difference between Rps801p and Rps802p. Additional 40S ribosomal protein paralog pairs also exhibit similar phenotypic differences via differential Rpl42p levels in actively translating ribosomes. Together, our work identifies variations in the Rpl42p level as a potential form of ribosome heterogeneity in biochemical compositions and suggests a possible connection between large and small subunits during ribosome biogenesis that may cause such heterogeneity. Additionally, it illustrates the complexity of the underlying mechanisms for the genetic specificity of ribosome paralogs.


Schizosaccharomyces , Amino Acid Sequence , Protein Biosynthesis , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
...