Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(Supplement_1): i79-i90, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940163

RESUMEN

MOTIVATION: Human epidermal growth factor receptor 2 (HER2) status identification enables physicians to assess the prognosis risk and determine the treatment schedule for patients. In clinical practice, pathological slides serve as the gold standard, offering morphological information on cellular structure and tumoral regions. Computational analysis of pathological images has the potential to discover morphological patterns associated with HER2 molecular targets and achieve precise status prediction. However, pathological images are typically equipped with high-resolution attributes, and HER2 expression in breast cancer (BC) images often manifests the intratumoral heterogeneity. RESULTS: We present a phenotype-informed weakly supervised multiple instance learning architecture (PhiHER2) for the prediction of the HER2 status from pathological images of BC. Specifically, a hierarchical prototype clustering module is designed to identify representative phenotypes across whole slide images. These phenotype embeddings are then integrated into a cross-attention module, enhancing feature interaction and aggregation on instances. This yields a phenotype-based feature space that leverages the intratumoral morphological heterogeneity for HER2 status prediction. Extensive results demonstrate that PhiHER2 captures a better WSI-level representation by the typical phenotype guidance and significantly outperforms existing methods on real-world datasets. Additionally, interpretability analyses of both phenotypes and WSIs provide explicit insights into the heterogeneity of morphological patterns associated with molecular HER2 status. AVAILABILITY AND IMPLEMENTATION: Our model is available at https://github.com/lyotvincent/PhiHER2.


Asunto(s)
Neoplasias de la Mama , Fenotipo , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Aprendizaje Automático Supervisado , Biología Computacional/métodos
2.
Adv Sci (Weinh) ; 10(11): e2206151, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794291

RESUMEN

Accurately predicting peptide secondary structures remains a challenging task due to the lack of discriminative information in short peptides. In this study, PHAT is proposed, a deep hypergraph learning framework for the prediction of peptide secondary structures and the exploration of downstream tasks. The framework includes a novel interpretable deep hypergraph multi-head attention network that uses residue-based reasoning for structure prediction. The algorithm can incorporate sequential semantic information from large-scale biological corpus and structural semantic information from multi-scale structural segmentation, leading to better accuracy and interpretability even with extremely short peptides. The interpretable models are able to highlight the reasoning of structural feature representations and the classification of secondary substructures. The importance of secondary structures in peptide tertiary structure reconstruction and downstream functional analysis is further demonstrated, highlighting the versatility of our models. To facilitate the use of the model, an online server is established which is accessible via http://inner.wei-group.net/PHAT/. The work is expected to assist in the design of functional peptides and contribute to the advancement of structural biology research.


Asunto(s)
Algoritmos , Péptidos , Estructura Secundaria de Proteína , Péptidos/química
3.
Nucleic Acids Res ; 51(7): 3017-3029, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36796796

RESUMEN

Here, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning platform for high-throughput biological sequence functional analysis. DeepBIO is a one-stop-shop web service that enables researchers to develop new deep-learning architectures to answer any biological question. Specifically, given any biological sequence data, DeepBIO supports a total of 42 state-of-the-art deep-learning algorithms for model training, comparison, optimization and evaluation in a fully automated pipeline. DeepBIO provides a comprehensive result visualization analysis for predictive models covering several aspects, such as model interpretability, feature analysis and functional sequential region discovery. Additionally, DeepBIO supports nine base-level functional annotation tasks using deep-learning architectures, with comprehensive interpretations and graphical visualizations to validate the reliability of annotated sites. Empowered by high-performance computers, DeepBIO allows ultra-fast prediction with up to million-scale sequence data in a few hours, demonstrating its usability in real application scenarios. Case study results show that DeepBIO provides an accurate, robust and interpretable prediction, demonstrating the power of deep learning in biological sequence functional analysis. Overall, we expect DeepBIO to ensure the reproducibility of deep-learning biological sequence analysis, lessen the programming and hardware burden for biologists and provide meaningful functional insights at both the sequence level and base level from biological sequences alone. DeepBIO is publicly available at https://inner.wei-group.net/DeepBIO.


The development of next-generation sequencing techniques has led to an exponential increase in the amount of biological sequence data accessible. It naturally poses a fundamental challenge­how to build the relationships from such large-scale sequences to their functions. In this work, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning platform for high-throughput biological sequence functional analysis. It enables researchers to develop new deep-learning architectures to answer any biological question in a fully automated pipeline. We expect DeepBIO to ensure the reproducibility of deep-learning-based biological sequence analysis, lessen the programming and hardware burden for biologists and provide meaningful functional insights at both the sequence level and base level from biological sequences alone.


Asunto(s)
Aprendizaje Profundo , Reproducibilidad de los Resultados , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...