Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS Comput Biol ; 20(4): e1011927, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652712

Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.


Computational Biology , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Computational Biology/methods , Algorithms , Neural Networks, Computer , Genetic Predisposition to Disease/genetics , Machine Learning
2.
Comput Biol Med ; 166: 107492, 2023 Sep 23.
Article En | MEDLINE | ID: mdl-37820558

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.

...