Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38557019

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Gold , Metal Nanoparticles , Gold/toxicity , Gold/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
2.
Nano Lett ; 23(11): 5131-5140, 2023 06 14.
Article En | MEDLINE | ID: mdl-37191492

Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.


Biocatalysis , Tellurium/chemistry , Selenium/chemistry , Reactive Oxygen Species/chemistry , Nanoparticles/chemistry , Antioxidants/chemistry , Animals , Mice , Oxidation-Reduction
3.
J Mater Chem B ; 9(46): 9485-9496, 2021 12 01.
Article En | MEDLINE | ID: mdl-34797365

Neural electrodes are used for acquiring neuron signals in brain-machine interfaces, and they are crucial for next-generation neuron engineering and related medical applications. Thus, developing flexible, stable and high-resolution neural electrodes will play an important role in stimulation, acquisition, recording and analysis of signals. Compared with traditional metallic electrodes, electrodes based on graphene and other two-dimensional materials have attracted wide attention in electrophysiological recording and stimulation due to their excellent physical properties such as unique flexibility, low resistance, and high optical transparency. In this review, we have reviewed the recent progress of electrodes based on graphene, graphene/polymer compounds and graphene-related materials for neuron signal recording, stimulation, and related optical signal coupling technology, which provides an outlook on the role of electrodes in the nanotechnology-neuron interface as well as medical diagnosis.


Brain-Computer Interfaces , Graphite , Animals , Brain/physiology , Electrodes , Humans
4.
Materials (Basel) ; 10(12)2017 Nov 28.
Article En | MEDLINE | ID: mdl-29182582

The electronic structures and magnetic properties of FeRuCrP and FeRhCrP quaternary Heusler compounds with LiMgPbSb-type structures have been investigated via first-principles calculations. The calculational results show that both FeRuCrP and FeRhCrP compounds present perfect half-metallic properties: Showing large half-metallic band gaps of 0.39 eV and 0.38 eV, respectively. The total magnetic moments of FeRuCrP and FeRhCrP are 3 µB and 4 µB per formula unit, respectively. The magnetism of them mainly comes from the 3d electrons of Cr atoms and follows the Slater-Paulig behavior of Heusler compounds: Mt = Zt - 24. Furthermore, the half-metallic properties of FeRuCrP and FeRhCrP compounds can be kept in a quite large range of lattice constants (about 5.44-5.82 Å and 5.26-5.86 Å, respectively) and are quite robust against tetragonal deformation (c/a ratio in the range of 0.94-1.1 and 0.97-1.1, respectively). Moreover, the large negative cohesion energy and formation energy of FeRuCrP and FeRhCrP compounds indicate that they can be synthesized experimentally.

5.
Nanoscale Res Lett ; 11(1): 521, 2016 Dec.
Article En | MEDLINE | ID: mdl-27885622

Few-layer black phosphorus (BP) attracts much attention owing to its high mobility and thickness-tunable band gap; however, compared with the commonly studied transition metal dichalcogenides (TMDCs), BP has the unfavorable property of degrading in ambient conditions. Here, we propose an inverted dual gates structure of ultrathin BP FET to research the air adsorption on BP. In fabrication process of back-gate BP FET, BP was transferred directly onto a wafer covered with electrodes. Thus, we can exclude the BP degradation during the process of electrodes fabrication, such as electron beam lithography (EBL) and thermal evaporation process. Furthermore, without any electrode covering BP, BP could be in full contact with the air; then the accurate effect of the air adsorption on BP can be researched in detail. The results clearly show that annealing can remove the p-doping resulted from the metastable oxygen adsorbed on the surface of BP, but the adsorption can be restored in a few hours exposure. In addition, both back and top gate inverted BP FETs exhibit a favorable performance. Therefore, this inverted structure is also an optional structure to reduce the influence of the instability of BP devices.

6.
Sci Rep ; 6: 24568, 2016 Apr 19.
Article En | MEDLINE | ID: mdl-27090614

The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z(2) - r(2) and low energy x(2) - y(2) orbitals, which makes electrons occupy the localized x(2) - y(2) orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices.

7.
Nanoscale Res Lett ; 10(1): 418, 2015 Dec.
Article En | MEDLINE | ID: mdl-26497733

We develop a composite photoanode by sensitizing TiO2 nanorod arrays with PbS quantum dots (QDs) and CdS QDs. Benefitted from additional introduced PbS QDs and CdS QDs onto TiO2, the absorption of the composite photoanodes are broaden from UV to visible region. The experimental results showed that the PbS sandwiched between TiO2 and CdS cannot only broad the absorption properties but also improve the stability. The stability can be explained by the hole facile transmission from PbS to CdS because of the valence band offsets between PbS and CdS which cause a small energy barrier and reduce the hole accumulation. The photocurrent density reached 1.35 mA cm(-2) at 0.9716 V vs. RHE (0 V vs. Ag/AgCl, under 60 mW cm(-2) illumination) for TiO2/PbS/CdS. The highest photocurrent of TiO2/PbS/CdS can be explained by the smallest of total resistance (138 Ω cm(-2)) compared to TiO2/CdS and pristine TiO2.

8.
Nature ; 520(7545): 69-72, 2015 Apr 02.
Article En | MEDLINE | ID: mdl-25778703

Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

9.
Opt Express ; 22(3): 2536-44, 2014 Feb 10.
Article En | MEDLINE | ID: mdl-24663546

We identify that the stimulated emission of GaN laser diodes (LDs) emerges far below the traditionally recognized threshold from both optical and electrical experiments. Below the threshold, the linear-polarized stimulated emission has been the dominating part of overall emission and closely related to resonant cavity. Its intensity increases super linearly with current while that of spontaneous emission increases almost linearly. Moreover, the separation of quasi-Fermi levels of electrons and holes across the active region has already exceeded the photon emission energy, namely, realized the population-inversion.

...