Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Angew Chem Int Ed Engl ; 63(13): e202400742, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38319193

Tautomers coexisting in an equilibrium system have significant potential for regulating luminescent properties because of their structural differences. However, separating and stabilizing tautomers at room temperature is a considerable challenge. In this study, it is found that hydrogen-bonded organic frameworks (HOFs) composed of Br- anions can effectively separate and stabilize two proton-transfer tautomers of triarylformamidinium bromide: namely, the nitrogen cation (BA-N) and carbon cation (BA-C). The BA-N crystal consisting of a dense anionic HOF and parallelly aligned organic cations exhibits green thermally activated delayed fluorescence and red room-temperature phosphorescence (RTP). The BA-C crystal contains acetone molecules that induce an antiparallel arrangement of the organic cations to form a loose HOF, producing blue prompt fluorescence and green RTP. Interestingly, switching of the HOFs between BA-N and BA-C can be achieved through the uptake and release of acetone, thereby dynamically adjusting multiple luminescent properties. Consequently, the HOF crystals can be used for the highly sensitive and specific sensing of acetone with a detection limit of 66.74 ppm. This study not only stabilizes tautomeric luminescent materials at room temperature, but also provides a new method for constructing smart HOFs with a sensitive response to a stimulus.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Article En | MEDLINE | ID: mdl-37630921

All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3-x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3-x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3-x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3-x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications.

3.
Adv Mater ; 35(18): e2211992, 2023 May.
Article En | MEDLINE | ID: mdl-36807946

2D organic-inorganic hybrid perovskites (OIHPs) show obvious advantages in the field of optoelectronics due to their high luminescent stability and good solution processability. However, the thermal quenching and self-absorption of excitons caused by the strong interaction between the inorganic metal ions lead to a low luminescence efficiency of 2D perovskites. Herein, a 2D Cd-based OIHP phenylammonium cadmium chloride (PACC) with a weak red phosphorescence (ΦP  < 6%) at 620 nm and a blue afterglow is reported. Interestingly, the Mn-doped PACC exhibits very strong red emission with nearly 200% quantum yield and 15 ms lifetime, thus resulting in a red afterglow. The experimental data prove that the doping of Mn2+ not only induces the multiexciton generation (MEG) process of the perovskite, avoiding the energy loss of inorganic excitons, but also promotes the Dexter energy transfer from organic triplet excitons to inorganic excitons, thus realizing the superefficient red-light emission of Cd2+ . This work suggests that guest metal ions can induce host metal ions to realize MEG in 2D bulk OIHPs, which provides a new idea for the development of optoelectronic materials and devices with ultrahigh energy utilization.

4.
Angew Chem Int Ed Engl ; 61(11): e202116511, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35015323

Herein, new types of zero-dimensional (0D) perovskites (PA6InCl9 and PA4InCl7) with blue room-temperature phosphorescence (RTP) were obtained from InCl3 and aniline hydrochloride. These are highly sensitive to external light and force stimuli. The RTP quantum yield of PA6InCl9 can be enhanced from 25.2 % to 42.8 % upon illumination. Under mechanical force, PA4InCl7 exhibits a phase transform to PA6InCl9, thus boosting ultralong RTP with a lifetime up to 1.2 s. Furthermore, white and orange pure RTP with a quantum yield close to 100 % can be realized when Sb3+ was introduced into PA6InCl9. The white pure phosphorescence with a color-rendering index (CRI) close to 90 consists of blue RTP of PA6InCl9 and orange RTP of Sb3+ . Thus, this work not only overcomes long-standing problems of low quantum yield and short lifetime of blue RTP, but also obtains high-efficiency white RTP. It provides a feasible method to realize near-unity quantum efficiency and has great application potential in the fields of optical devices and smart materials.

5.
Chem Sci ; 12(43): 14451-14458, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34880996

Organic-inorganic hybrid metal halides have attracted intensive attention because of their unique electronic structure and solution processability. They have a rigid micro/nano-structure and heavy atom effect, which has obvious advantages in promoting organic room temperature phosphorescence (RTP). However, the toxicity of heavy metals has limited their further development. Herein, two metal-free 2D layered ammonium halides, homopiperonylammonium bromide and chloride (HLB and HLC), are described for the first time. Their layered structure consists of rigid inorganic ammonium halide laminates and neatly stacked organic layers. The rigid laminates and external heavy atom effect of halogen atoms make HLB and HLC produce green RTP. When phosphor guests with different triplet energies are doped into HLB, HLC, or phenylethylamine salt hosts, effective full-color and even white ultra-long RTP with phosphorescence quantum yield up to 18.7% and lifetime up to 1.7 s is realized through energy transfer between the host and guest. Due to the simple solution synthesis, 10 g-level doped layered organic ammonium halides with the same phosphorescence properties can be easily obtained. The information ink based on these doped halides and non-toxic ethanol solvent can form various patterns on filter paper. The fluorescence and phosphorescence of these patterns are sensitive to the excitation wavelength and acid-base vapor. Consequently, they can be applied to multiple complex anti-counterfeiting and fluorescence/phosphorescence dual-mode chemical sensors.

6.
J Phys Chem Lett ; 12(3): 1040-1045, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33470819

Herein, an organic fluorophore termed NLAC is introduced into 2D hybrid perovskites with wide band gap (>3.54 eV) to give a green emission with quantum yield up to 81%. The highly efficient luminescence is ascribed to avoiding the aggregation of NLAC and formation of an inorganic free exciton which is easy to thermally quench. On this basis, a new strategy to generate efficient white emission with afterglow has been proposed by codoping a short-wavelength fluorophore and long-wavelength phosphor into 2D organic-inorganic hybrid perovskites (OIHPs). As a result, a single-component white-light-emitting material PEPC-3N based on NLAC with CIE of (0.33, 0.36) and quantum yield up to 43% can be obtained. Interestingly, PEPC-3N shows a dual-color organic afterglow and excitation-wavelength-dependent emission, consequently forming a switch between green fluorescence and yellow afterglow. This unique performance indicates PEPC-3N has huge potential in afterglow WLEDs and information storage.

...