Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 4877-4892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828203

RESUMEN

Botanical preparations for herbal medicine have received more and more attention from drug researchers, and the extraction of active ingredients and their successful clinical application have become an important direction of drug research in major pharmaceutical companies, but the complexity of extracts, multiple side effects, and significant individual differences have brought many difficulties to the clinical application of herbal preparations. It is noteworthy that extracellular vesicles as active biomolecules extracted from medicinal plants are believed to be useful for the treatment of a variety of diseases, including cancer, inflammation, regenerative-restorative and degenerative diseases, which may provide a new direction for the clinical utilization of herbal preparations. In this review, we sort out recent advances in medicinal plant extracellular vesicles and discuss their potential as disease therapeutics. Finally, future challenges and research directions for the clinical translation of medicinal plant extracellular vesicles are also discussed, and we expect that continued development based on medicinal plant extracellular vesicles will facilitate the clinical application of herbal preparations.


Asunto(s)
Vesículas Extracelulares , Plantas Medicinales , Animales , Humanos , Vesículas Extracelulares/química , Neoplasias/tratamiento farmacológico , Fitoterapia/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plantas Medicinales/química , Plantas Medicinales/citología
2.
Front Immunol ; 15: 1364401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545101

RESUMEN

The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Vesículas Extracelulares/fisiología , Inflamación/terapia , Células Madre Mesenquimatosas/fisiología
3.
Front Pharmacol ; 14: 1112743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778004

RESUMEN

The side effects of anesthetic drugs are a key preoperative concern for anesthesiologists. Anesthetic drugs used for general anesthesia and regional blocks are associated with a potential risk of systemic toxicity. This prompted the use of anesthetic adjuvants to ameliorate these side effects and improve clinical outcomes. However, the adverse effects of anesthetic adjuvants, such as neurotoxicity and gastrointestinal reactions, have raised concerns about their clinical use. Therefore, the development of relatively safe anesthetic adjuvants with fewer side effects is an important area for future anesthetic drug research. Exosomes, which contain multiple vesicles with genetic information, can be released by living cells with regenerative and specific effects. Exosomes released by specific cell types have been found to have similar effects as many local anesthetic adjuvants. Due to their biological activity, carrier efficacy, and ability to repair damaged tissues, exosomes may have a better efficacy and safety profile than the currently used anesthetic adjuvants. In this article, we summarize the contemporary literature about local anesthetic adjuvants and highlight their potential side effects, while discussing the potential of exosomes as novel local anesthetic adjuvant drugs.

4.
Cancers (Basel) ; 14(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291860

RESUMEN

The molecular mechanisms of obesity-induced cancer progression have been extensively explored because of the significant increase in obesity and obesity-related diseases worldwide. Studies have shown that obesity is associated with certain features of prostate cancer. In particular, bioactive factors released from periprostatic adipose tissues mediate the bidirectional communication between periprostatic adipose tissue and prostate cancer. Moreover, recent studies have shown that extracellular vesicles have a role in the relationship between tumor peripheral adipose tissue and cancer progression. Therefore, it is necessary to investigate the feedback mechanisms between prostate cancer and periglandular adipose and the role of exosomes as mediators of signal exchange to understand obesity as a risk factor for prostate cancer. This review summarizes the two-way communication between prostate cancer and periglandular adipose and discusses the potential role of exosomes as a cross-talk and the prospect of using adipose tissue as a means to obtain exosomes in vitro. Therefore, this review may provide new directions for the treatment of obesity to suppress prostate cancer.

5.
Front Oncol ; 12: 879391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669417

RESUMEN

Bladder cancer (BC) is one of the most important tumors of the genitourinary system, associated with high morbidity and mortality rates. Over the years, various antitumor treatments have been developed, and immunotherapy is one of the most effective methods. Immunotherapy aims to activate the body's immune system to kill cancer cells. It has been established that immunotherapy drugs can be classified into "non-targeted" and "targeted" drugs depending on their site of action. Immunotherapy is reportedly effective for BC. Even though it can attack cancer cells, it can also cause the immune system to attack healthy cells, which can occur at any time during treatment and sometimes even after immunotherapy is stopped. Importantly, different types of immunotherapies can cause different side effects. Side effects may manifest themselves as signs or as symptoms. The prevention and treatment of side effects caused by immunotherapy is an important part of cancer patient management.

6.
Front Oncol ; 12: 873296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747825

RESUMEN

Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today's medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today's research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.

7.
Front Bioeng Biotechnol ; 10: 1097074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588947

RESUMEN

Macrophages (Mφs) are significant innate immune cells that perform a variety of tasks in response to different pathogens or stimuli. They are widely engaged in the pathological processes of various diseases and can contribute to tumorigenesis, progression and metastasis by regulating the tumor microenvironment and cancer cells. They are also the basis of chemoresistance. In turn, the tumor microenvironment and the metabolism of cancer cells can limit the differentiation, polarization, mobilization and the ability of Mφs to initiate an effective anti-tumor response. Extracellular vesicles (EVs) are small vesicles released by live cells that serve as crucial mediators of intercellular cell communication as well as a potential promising drug carrier. A growing number of studies have demonstrated that Mφs-EVs are not only important mediators in the pathological processes of various diseases such as inflammatory disorders, fibrosis and cancer, but also show significant potential in immunological modulation, cancer therapy, infectious defense and tissue repair. These natural nanoparticles (NPs) derived from Mφs are believed to be pleiotropic, stable, biocompatible and low immunogenic, providing novel alternatives for cancer treatment. This review provides an update on the pathological and therapeutic roles of Mφs-EVs in cancer, as well as their potential clinical applications and prospects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA