Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339153

RESUMEN

Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide (LPS)-induced ALI remain to be elucidated. To assess the in vitro anti-inflammatory effects and anti-lung injury activity of rosavin, RAW264.7 and A549 cells were stimulated using 1 µg/mL LPS. Rosavin attenuated LPS-induced activation of the TLR-4/NF-κB signaling pathway in RAW264.7 cells and inhibited LPS-induced release of inflammatory factors in A549 cells. A mouse model of acute lung injury was constructed by intraperitoneal injection of 5 mg/kg LPS to observe the therapeutic effect of rosavin. Transcriptomics analysis and Western blot assays were utilized to verify the molecular mechanism, rosavin (20, 40, and 80 mg/kg) dose-dependently ameliorated histopathological alterations, reduced the levels of inflammatory factors, and inhibited the TLR-4/NF-κB/MAPK signaling pathway and apoptosis activation. Rosavin is a promising therapeutic candidate for acute lung injury by inhibiting the TLR-4/NF-κB/MAPK pathway.


Asunto(s)
Lesión Pulmonar Aguda , Disacáridos , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Disacáridos/uso terapéutico , Lipopolisacáridos/toxicidad , Pulmón/patología , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Biomed Pharmacother ; 158: 114186, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36587557

RESUMEN

Acute lung injury (ALI) is a common respiratory disease in clinics, which is characterized by alveolar-capillary membrane loss, plasma protein leakage, pulmonary edema, massive neutrophil infiltration, and the release of proinflammatory cytokines and mediators. Rhodiola rosea L. an adaptogenic plant rich in phenylethanoloids, phenylpropanoids, monoterpenes, has anti-inflammatory and antioxidant effects. We hope to verify the relieving effect of total glycosides of Rhodiola rosea L. (RTG) on ALI in mice and clarify its mechanism through this study. In this study, we identified the effect and mechanism of RTG on ALI through LPS-induced ALI mice. After RTG treatment, the pathological structure of lung tissue in ALI mice induced by LPS was significantly improved, and the infiltration of inflammatory cells was reduced. In addition, RTG reduced the production of IL-6, IL-1ß, and TNF-α in the serum of ALI mice and reduced the content or activity of MPO, T-SOD, GSH, and MDA in lung tissue. RNAseq analysis showed that RTG ameliorated LPS-induced ALI through anti-inflammatory, reduced immune response, and anti-apoptotic activities. The western blotting analysis confirmed that RTG could down-regulate the expression levels of TLR4, MyD88, NF-κB p65, and p-IκBα/IκBα. These results suggest that RTG can attenuate LPS-induced ALI through antioxidants and inhibition of the TLR4/NF-κB pathway.


Asunto(s)
Lesión Pulmonar Aguda , Glicósidos , Rhodiola , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios , Antioxidantes , Glicósidos/farmacología , Lipopolisacáridos/farmacología , Pulmón , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Rhodiola/química , Transducción de Señal , Receptor Toll-Like 4/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33747104

RESUMEN

The root cause behind the development of chronic obstructive pulmonary disease (COPD) is cigarette smoke that induces the inflammation of the lung tissue and alveolar destruction. Long-term cigarette smoking can lead to deterioration in lung parenchymal function and cause structural changes in the lung, further resulting in pulmonary fibrosis. Rhodiola rosea L., a traditional medicinal perennial herb, is well known for its numerous pharmacological benefits, including anti-inflammation, antioxidant, antifatigue, antidepressive, and antifibrotic properties. Here, we evaluated the pharmacological effects and mechanisms of the Rhodiola rosea L. (RRL) macroporous resin extract on COPD caused by lipopolysaccharide (LPS) and cigarette smoke (CS) in rats. The RRL significantly improved the pathological structure of the lung tissue. Additionally, RRL decreased the infiltration of inflammatory cells and, subsequently, oxidative stress. Furthermore, the RNAseq assay indicated that RRL attenuated the CS and LPS-induced COPD via anti-inflammatory, antifibrotic, and antiapoptotic activities. Western blot analysis substantiated that the RRL resulted in upregulated levels of Nrf2 and HO-1 as well as downregulated levels of IκBα, NF-κB p65, α-SMA, and TGF-ß1. Interestingly, the RRL could protect rats from CS and LPS-induced COPD by inhibiting the ERK1/2 and Smad3 signaling pathways and apoptosis. Thus, the RRL could attenuate CS and LPS-induced COPD through inflammation inhibition and antioxidant and antifibrosis pathways.

4.
Bioresour Technol ; 244(Pt 1): 560-568, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28803106

RESUMEN

Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface. Assessment of interfacial interactions showed that an increase in fractal roughness of membrane surfaces will strengthen and prolong the interfacial interactions between membranes and foulants, and under conditions in this study, will significantly increase the adhesion propensity of a foulant particle on membrane surface. This interesting result can be attributed to that increase in fractal roughness simultaneously improves separation distance and interaction surface area for adhesion of a foulant particle. This study gives deep insights into interfacial interactions and membrane fouling in MBRs.


Asunto(s)
Reactores Biológicos , Fractales , Aguas del Alcantarillado , Membranas Artificiales
5.
Sci Rep ; 7(1): 2721, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28578428

RESUMEN

This study provided the first attempt of grafting hydrophobic polyvinylidene fluoride (PVDF) membrane with hydrophilic hydroxyethyl acrylate (HEA) monomer via a radiation grafting method. This grafted membrane showed an enhanced hydrophilicity (10° decrease of water contact angle), water content ratio, settling ability and wettability compared to the control membrane. Interestingly, filtration tests showed an improved dependence of water flux of the grafted membrane on the solution pH in the acidic stage. Atomic force microscopy (AFM) analysis provided in-situ evidence that the reduced surface pore size of the grafted membrane with the solution pH governed such a dependence. It was proposed that, the reduced surface pore size was caused by the swelling of the grafted chain matrix, with the pH increase due to the chemical potential change. It was found that the grafted membrane showed a lower relative flux decreasing rate than the control membrane. Moreover, flux of the bovine serum albumin (BSA) solution was noticeably larger than that of pure water for the grafted membrane. Higher BSA flux than water flux can be explained by the effects of electric double layer compression on the polymeric swelling. This study not only provided a pH-sensitive PVDF membrane potentially useful for various applications, but also proposed novel mechanisms underlying the enhanced performance of the grafted membrane.

6.
J Colloid Interface Sci ; 494: 194-203, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28160704

RESUMEN

In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...