Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Mater Horiz ; 10(3): 859-868, 2023 Mar 06.
Article En | MEDLINE | ID: mdl-36602156

The implementation of high-safety Li metal batteries (LMBs) needs more stable and safer electrolytes. The solid-state electrolytes (SSEs) with their advantageous properties stand out for this purpose. However, low Li/electrolyte interfacial instability and uncontrolled Li dendrites growth trigger unceasing breakage of the solid electrolyte interphase (SEI), leading to fast capacity degradation. In response to these shortcomings, a new type of polymer electrolyte with self-healing capacity is introduced by grafting ionic liquid chain units into the backbones of polymers, which inherits the chemical inertness against the Li anode, allowing high Li+ transport, wide electrochemical window, and self-healing traits. Benefiting from the strong external H-bonding interactions, the obtained polymer electrolyte can spontaneously reconstruct dendrite-induced defects and fatigue crack growth at the Li/electrolyte interface, and, in turn, help tailor Li deposition. Owing to the resilient Li/electrolyte interface and dendrite-free Li plating, the equipped Li|LFP batteries display a high initial specific capacity of 134.7 mA h g-1, rendering a capacity retention of 91.2% after 206 cycles at room temperature. The new polymer electrolyte will undoubtedly bring inspiration for developing practical LMBs with highly improved safety and interfacial stability.

2.
Biosensors (Basel) ; 14(1)2023 Dec 29.
Article En | MEDLINE | ID: mdl-38248395

In this study, a nanocomposite of LDH/graphene/polyaniline/gold (LDH/rGO/PANI/Au) was synthesized and characterized. The results of characterization showed that the composite material preserved the layered structure of LDH. The composite was dropped onto the glassy carbon electrode and laccase was then immobilized. Electrochemical tests showed that the composite could accelerate the electron transfer between the enzyme and the electrode. The composite/laccase showed an obvious response to rutin and the optimal detection conditions were discussed. The oxidative peak current of the biosensor constructed using the modified electrode was negatively correlated with rutin in the range of 0.05-4 µg/mL. The detection limit was 0.0017 µg/mL at a signal-to-noise ratio of 3. This biosensor of rutin also possessed high sensitivity, excellent anti-interference ability, and stability. The contents of rutin in tablets, first determined using HPLC, were also detected using the sensor constructed in this research as an application, and the results were acceptable. This research here provides a facile way for the fast detection of rutin in real samples.


Biosensing Techniques , Nanocomposites , Rutin , Laccase , Electrodes
3.
PLoS One ; 16(9): e0256710, 2021.
Article En | MEDLINE | ID: mdl-34469463

Land prices are the key problem of urban land management, with prices of residential land being the most sensitive and the strongest social reflection among the different land types. Exploring spatial and temporal variation of residential land prices and the effect of land market factors on residential land prices can help the government formulate targeted regulations and policies. This study analyzes the spatial and temporal evolution of residential land prices and the factors influencing the land market in the Beijing-Tianjin-Hebei region based on land transaction data from 2014-2017 using exploratory spatial data analysis (ESDA) and a geographically weighted regression (GWR) model. The results show the following: ① Residential land prices in Beijing and Tianjin are significantly higher than those in other regions, while Zhangjiakou, Chengde, and western mountainous areas have the lowest residential land prices. Over time, a development trend of residential land price polycentricity gradually emerged, and the locational correlation has gradually increased. ② Under the influence of the land finance model of local governments in China, three factors, namely, the land stock utilization rate, revenue from residential land transfers, and the growth of residential land transaction areas, have significantly contributed to the increase in residential land prices. ③ Under the land market supply and demand mechanism and government management, four indicators, namely, the land supply rate, the per capita residential land supply area, the degree of marketization of the residential land supply, and the frequency of residential land transactions, have suppressed the rise in residential land prices. ④ The overall effect of land market factors on residential land prices in the central and northern regions of Beijing, Tianjin and Hebei is stronger than that in the southern regions, which may be related to the more active land market and stricter macromanagement policies in Beijing, Tianjin and surrounding areas.


Commerce/statistics & numerical data , Models, Economic , Natural Resources , Urbanization/trends , Beijing , Commerce/trends , Geography , Spatial Regression
4.
Environ Monit Assess ; 193(8): 486, 2021 Jul 10.
Article En | MEDLINE | ID: mdl-34245364

Particulate matter (PM) is the primary air pollutant in northern China. The PM2.5/PM10 ratio has been used increasingly as an indicator to reflect anthropogenic PM pollution, but its advantages compared with individual PM2.5 or PM10 concentrations have not been proven sufficiently by experimental data. By dividing Hebei Province (China) into seven natural ecological regions, this study investigated the spatial characteristics of the PM2.5/PM10 ratio and its relationships with PM2.5, PM10, economic density, and wind speed. Results showed that the PM2.5/PM10 ratio decreased from east to west and from south to north, with an annual average value in 2019 of 0.439-0.559. The characteristics of the spatial variation of the PM2.5/PM10 ratio were different to those of either PM2.5 or PM10 concentration, indicating that PM pollution reflected by the PM2.5/PM10 ratio is not entirely consistent with that by PM2.5 and PM10 concentrations. In comparison with PM2.5 or PM10 concentration, the PM2.5/PM10 ratio had higher (lower) correlation with economic density (wind speed), indicating that the PM2.5/PM10 ratio is a better indicator used to reflect the intensity of anthropogenic emissions of PM pollutants. According to the characteristics of the spatial variations of the PM2.5/PM10 ratio and the PM2.5 and PM10 concentrations, the seven ecological regions of Hebei Province were categorized into four different types of atmospheric PM pollution: "three low regions," "three high regions," "one high and two low regions," and "one low and two high regions." This reflects the comprehensive effect of the intensity of anthropogenic PM emissions and the atmospheric diffusion conditions.


Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
5.
ACS Nano ; 14(12): 17308-17320, 2020 Dec 22.
Article En | MEDLINE | ID: mdl-33253548

Improving the sulfur loading in cathodes is a significant challenge for practical lithium-sulfur batteries. Although carbonaceous sulfur hosts can achieve higher sulfur content and loading, the low tap densities of carbonaceous materials lead to low volumetric energy densities, restricting practical application. Here, conductive porous laminated vanadium nitride (VN) as a carbon-free sulfur host has been successfully developed to construct high tap density, high sulfur loading, and high energy density sulfur electrodes. The laminated stacking multiscale VN featuring interconnected holes possesses high storage space for sulfur loading, achieving high sulfur loading and utilization. VN@S materials' sulfur content and tap density can achieve 80 wt % and 1.17 g cm-3, respectively. At the sulfur loading of 1.0 mg cm-2, the VN@S cathode reaches the reversible capacity of 790 mAh g-1 at 1 C after 200 cycles and 145.2 mAh g-1 at 15 C after 500 cycles. Precisely, at a high sulfur loading of 12.6 mg cm-2, the VN@S cathode delivers a reversible capacity of 518.8 mAh g-1 (485.6 mAh cm-3) at 0.1 C after 100 cycles.

6.
PLoS One ; 15(9): e0238547, 2020.
Article En | MEDLINE | ID: mdl-32946497

Based on 0.01°×0.01° grid data of PM2.5 annual concentration and statistical yearbook data for 11 cities in Hebei Province from 2000 to 2015, the temporal and spatial distribution characteristics of PM2.5 in the study area are analysed, the level of intensive land use in the area is evaluated, and decoupling theory and spatial regression are used to discuss the relationship between PM2.5 concentration and intensive land use and the influence of intensive land use variables on PM2.5 in Hebei Province. The results show that 1. In terms of time, the concentration of PM2.5 in Hebei Province showed an overall upward trend from 2000 to 2015, with the highest in winter and the lowest in summer. The daily variations show double peaks at 8:00-10:00 and 21:00-0:00 and a single valley at 16:00-18:00. 2. In terms of space, the concentration of PM2.5 in Hebei Province is high in the southeast and low in the northwest, and the pollution spillover initially decreases and then increases. 3. In the past 16 years, the level of intensive land use in Hebei Province has increased annually, but blind expansion still exists. 4. Decoupling theory and the spatial lag model show that land use intensity, land input level and land use structure are positively correlated with PM2.5 concentration, land output benefit is negatively correlated with PM2.5 concentration, and PM2.5 concentration and land intensive use level have not yet been decoupled; thus, the relationship is not harmonious. This research can provide a scientific basis for reducing air pollution and promoting the development of urban land resources for intensive and sustainable development.


Air Pollutants/analysis , Air Pollution/analysis , Natural Resources , Particulate Matter/analysis , China , Cities , Environmental Monitoring , Seasons , Spatial Regression , Urbanization
7.
ACS Appl Mater Interfaces ; 11(43): 40944-40950, 2019 Oct 30.
Article En | MEDLINE | ID: mdl-31597422

An individual nanoparticle-based plasmonic nanotechnology was used for real-time monitoring of lectin-sugar interactions, which could be designed as novel plasmonic nanobiosensors for the detection of trace concanavalin A (ConA) with high sensitivity and selectivity. The localized surface plasmon resonance (LSPR) spectra of Au@Ag nanocubes (NCs) are linearly shifted to a long wavelength with an increasing concentration of ConA. In fact, each Au@Ag NC can act as a nanobiosensor for the quantified detection of trace ConA, which enables the miniaturization of the biosensor system to nanoscale. Furthermore, the results demonstrated the perfect biosensing ability with the dual channel of dark-field microscopy images and LSPR spectra. We expect that this nanobiosensor system can provide an alternative important method for monitoring the specific binding of lectin-sugar at a single nanoparticle surface.


Carbohydrates/analysis , Concanavalin A/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Surface Plasmon Resonance
8.
ACS Appl Mater Interfaces ; 11(38): 34895-34903, 2019 Sep 25.
Article En | MEDLINE | ID: mdl-31479240

Separators are key safety components for electrochemical energy storage systems. However, the intrinsic poor wettability with electrolyte and low thermal stability of commercial polyolefin separators cannot meet the requirements of the ever-expanding market for high-power, high-energy, and high-safety power systems, such as lithium-metal, lithium-sulfur, and lithium-ion batteries. In this study, scalable bendable networks built with ultralong silica nanowires (SNs) are developed as stable separators for both high-safety and high-power lithium-metal batteries. The three-dimensional porous nature (porosity of 73%) and the polar surface of the obtained SNs separators endue a much better electrolyte wettability, larger electrolyte uptake ratio (325%), higher electrolyte retention ratio (63%), and ∼7 times higher ionic conductivity than that of commercial polypropylene (PP) separators. Moreover, the pore-rich structure of the SNs separator can aid in evenly distributing lithium and, in turn, suppress the uncontrollable growth of lithium dendrites to a certain degree. Furthermore, the pure inorganic structure endows the SNs separators with excellent chemical and electrochemical stabilities even at elevated temperatures, as well as excellent thermal stability up to 700 °C. This work underpins the utilization of SNs separators as a rational choice for developing high-performance batteries with a metallic lithium anode.

9.
Small ; 15(29): e1804533, 2019 Jul.
Article En | MEDLINE | ID: mdl-30663258

Metal organic frameworks (MOFs)-derived porous carbon is proposed as a promising candidate to develop novel, tailorable structures as polysulfides immobilizers for lithium-sulfur batteries because of their high-efficiency electron conductive networks, open ion channels, and abundant central ions that can store a large amount of sulfur and trap the easily soluble polysulfides. However, most central ions in MOFs-derived carbon framework are encapsulated in the carbon matrix so that their exposures as active sites to adsorb polysulfides are limited. To resolve this issue, highly dispersed TiO2 nanoparticles are anchored into the cobalt-containing carbon polyhedras that are converted from ZIF-67. Such a type of TiO2 and Co nanoparticles-decorated carbon polyhedras (CCo/TiO2 ) provide more exposed active sites and much stronger chemical trapping for polysulfides, hence improving the sulfur utilization and enhancing reaction kinetics of sulfur-containing cathode simultaneously. The sulfur-containing carbon polyhedras decorated with TiO2 nanoparticles (S@CCo/TiO2 ) show a significantly improved cycling stability and rate capability, and deliver a discharge capacity of 32.9% higher than that of TiO2 -free S@CCo cathode at 837.5 mA g-1 after 200 cycles.

10.
ACS Appl Mater Interfaces ; 10(32): 27001-27008, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29999308

Although plenty of active materials could be used as supercapacitor electrodes, only limited ones have been engineered to construct transparent supercapacitors. Specially, it is a great challenge to make opaque metal oxides, which often own high energy density, into transparent films. Here, we demonstrate a novel approach to fabricate transparent MnO2 films for flexible transparent supercapacitors. By utilizing breath-figure polymer films with ordered pores as template, arrays of MnO2 islands were electrochemically deposited, with high light transmission. The thickness and interspace distance of MnO2 island arrays could be adjusted by tuning deposition time so that the capacitance and transparency of the electrodes are changed accordingly. Such island array structure can effectively eliminate the internal stress existing in the composite film to avoid cracks during bending operation. The assembled transparent supercapacitor shows a transmittance of 44% at 550 nm and can yield a high capacitance of 4.73 mF/cm2 at a current density of 50 µA/cm2, demonstrating high flexibility and stability.

11.
Nanoscale ; 10(24): 11384-11391, 2018 Jun 21.
Article En | MEDLINE | ID: mdl-29877544

Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 µg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.


Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Zeolites/chemistry , Antibiotics, Antineoplastic/administration & dosage , Catalysis , Doxorubicin/administration & dosage , Drug Liberation , Ferric Compounds , Porosity , Ultrasonics
12.
Nanoscale ; 10(8): 3709-3719, 2018 Feb 22.
Article En | MEDLINE | ID: mdl-29411819

A novel asymmetric supercapacitor device in an aqueous electrolyte is fabricated using a vanadyl phosphate/carbon nanocomposite as the positive electrode and a polypyrrole-derived carbon nanowire as the negative electrode. The vanadyl phosphate/carbon nanocomposites are synthesized by a simple two-step approach in which layered VOPO4·2H2O is first intercalated by dodecylamine and then annealed at high temperature, leading to the in situ carbonization of the intercalated dodecylamine. It is found that the sample in which the incorporated carbon with a high degree of graphitization exhibits a high specific capacitance of 469 F g-1 at a current density of 1 A g-1 and excellent rate performance (retained 77% capacitance at 10 A g-1). A polypyrrole-derived carbon nanowire is synthesized by the direct carbonization of nanowire-shaped polypyrrole, revealing a rough surface of nanowire-like frameworks and good electrochemical behavior. Taking advantage of both positive and negative materials, the assembled asymmetric supercapacitor device exhibits a high energy density of 30.6 W h kg-1 at a high power density of 813 W kg-1 in a wide voltage region of 0-1.6 V, as well as a good electrochemical stability (84.3% capacitance retention after 5000 cycles). The present work can shed light on the fabrication of novel asymmetric supercapacitors with high-performance.

13.
Nanoscale ; 9(1): 193-200, 2017 Jan 07.
Article En | MEDLINE | ID: mdl-27906390

Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm-2 at a scan rate of 10 mV s-1 and maximum energy density of 24.31 mW h cm-2 at a power density of 2.74 mW cm-2. In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm-1, which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.

14.
ACS Appl Mater Interfaces ; 8(17): 11122-7, 2016 05 04.
Article En | MEDLINE | ID: mdl-27082139

UNLABELLED: Metal mesh is a significant candidate of flexible transparent electrodes to substitute the current state-of-the-art material indium tin oxide (ITO) for future flexible electronics. However, there remains a challenge to fabricate metal mesh with order patterns by a bottom-up approach. In this work, high-quality Cu mesh transparent electrodes with ordered pore arrays are prepared by using breath-figure polymer films as template. The optimal Cu mesh films present a sheet resistance of 28.7 Ω·sq(-1) at a transparency of 83.5%. The work function of Cu mesh electrode is tuned from 4.6 to 5.1 eV by Ag deposition and the following short-time UV-ozone treatment, matching well with the PEDOT: PSS (5.2 eV) hole extraction layer. The modified Cu mesh electrodes show remarkable potential as a substitute of ITO/PET in the flexible OPV and OLED devices. The OPV cells constructed on our Cu mesh electrodes present a similar power conversion efficiency of 2.04% as those on ITO/PET electrodes. The flexible OLED prototype devices can achieve a brightness of 10 000 cd at an operation voltage of 8 V.

15.
Sci Rep ; 6: 25036, 2016 04 29.
Article En | MEDLINE | ID: mdl-27125309

Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

16.
Chem Commun (Camb) ; 52(13): 2721-4, 2016 Feb 14.
Article En | MEDLINE | ID: mdl-26758814

Thick carbon nanofiber (CNF) films were uniformly grown on metal wires with the assistance of pre-deposited NiO nanowalls. The as-prepared wire-shaped composites that integrate the capacitance of CNFs and Ni particles were directly used as electrodes to construct high capacitive fiber supercapacitors for micro-power supplies.

17.
Chem Rec ; 16(1): 273-94, 2016 Feb.
Article En | MEDLINE | ID: mdl-26684691

The detailed records and conclusions on the important advancements in graphene-based electrochemical biosensors have been reviewed. Due to their outstanding properties, graphene-based materials have been widely studied for the accurate electrochemical detection of many biomolecules, which is extremely vital to the development of biomedical instruments, clinical diagnosis, and disease treatment. This review discusses the graphene research for the effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and hemoglobin, etc., and the accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, RNA, and carcinoembryonic antigen, etc. In most of the cases, the graphene-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities.


Biosensing Techniques , Electrochemical Techniques , Graphite/chemistry , Glucose Oxidase/metabolism , Humans
18.
Nanoscale ; 7(40): 16874-9, 2015 Oct 28.
Article En | MEDLINE | ID: mdl-26411899

Coating nickel onto copper nanowires (Cu NWs) by one-pot synthesis is an efficient approach to improving the oxidation resistance of the nanowires. Because Ni is much less conductive than Cu, it is of great importance to understand the relationship between the thickness of the Ni coating layer and the properties of NWs. Here we demonstrate one-pot synthesis of Cu-Ni core-shell NWs with a tunable Ni thickness by simply varying the Cu and Ni mole ratio in the precursor. We have observed that an increase in Ni thickness decreases the aspect ratio, surface smoothness and network conductivity of the resulting NWs. However, Cu-Ni NWs with a thicker Ni layer display higher oxidation temperature. The optimal Cu-Ni NWs, which were prepared using a Cu(2+)/Ni(2+) molar ratio of 1/1, have a Ni-layer thickness of about 10 nm and the onset oxidation temperature of 270 °C. The derived transparent conductive films present a transmittance of 76% and a sheet resistance of 300 Ω sq(-1). The flexible heater constructed from such high quality Cu-Ni NW films demonstrates effective performance in heating and defrosting.

19.
Nanoscale ; 7(6): 2427-32, 2015 Feb 14.
Article En | MEDLINE | ID: mdl-25565111

Three-dimensional nitrogen-doped graphene (3D N-doped graphene) was prepared through chemical vapor deposition (CVD) by using porous nickel foam as a substrate. As a model, a dopamine biosensor was constructed based on the 3D N-doped graphene porous foam. Electrochemical experiments exhibited that this biosensor had a remarkable detection ability with a wide linear detection range from 3 × 10(-6) M to 1 × 10(-4) M and a low detection limit of 1 nM. Moreover, the fabricated biosensor also showed an excellent anti-interference ability, reproducibility, and stability.


Dopamine/chemistry , Electrochemical Techniques , Graphite/chemistry , Nitrogen/chemistry , Biocompatible Materials/chemistry , Biosensing Techniques , Electrodes , Humans , Limit of Detection , Microscopy, Electron, Scanning , Nickel/chemistry , Photoelectron Spectroscopy , Porosity , Reproducibility of Results , Spectrum Analysis, Raman , Temperature
20.
Nanoscale ; 6(2): 1079-85, 2014 Jan 21.
Article En | MEDLINE | ID: mdl-24296659

Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.


Graphite/chemistry , Manganese Compounds/chemistry , Nanotubes, Carbon/chemistry , Nickel/chemistry , Oxides/chemistry , Electric Capacitance , Electrodes , Porosity
...