Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.219
1.
Micromachines (Basel) ; 15(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38793210

Improving measurement accuracy is the core issue with surface acoustic wave (SAW) micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, leading to an unwanted or spurious signal. This can harm the device's frequency response characteristics, thereby potentially reducing the precision of the micro-force sensor's measurements. This paper examines the influence of anisotropy on wave propagation, and it also performs a phase-matching analysis between interdigital transducers (IDTs) and bulk waves. Two solutions are shown to reduce the influence of BAW for SAW micro sensors, which are arranged with acoustic absorbers at the ends of the substrate and in grooving in the piezoelectric substrate. Three different types of sensors were manufactured, and the test results showed that the sidelobes of the SAW micro-force sensor could be effectively inhibited (3.32 dB), thereby enhancing the sensitivity and performance of sensor detection. The SAW micro-force sensor manufactured using the new process was tested and the following results were obtained: the center frequency was 59.83 MHz, the fractional bandwidth was 1.33%, the range was 0-1000 mN, the linearity was 1.02%, the hysteresis was 0.59%, the repeatability was 1.11%, and the accuracy was 1.34%.

2.
Materials (Basel) ; 17(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38793297

Due to the recurrent starting and stopping operations of automobiles during service, their engines' hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the high-temperature cyclic oxidation performance of 18Cr-Mo (444-type) ferritic stainless steel by alloying with high-melting-point metal W and the rare earth element Ce. For this purpose, a high-temperature cyclic oxidation experiment was designed to simulate the actual service environment and investigate the high-temperature cyclic oxidation behavior and microstructure evolution of 444-type ferritic stainless steel alloyed with W and Ce. The oxide structure and composition formed during this process were analyzed and characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS) and electron probe X-ray micro-analyzer (EPMA), in order to reveal the mechanism of action of W and Ce in the cyclic oxidation process. The results show that 18Cr-Mo ferritic stainless steel alloyed with W and Ce exhibits an excellent resistance to high-temperature cyclic oxidation. The element W can promote the precipitation of the Laves phase between the matrix and the oxide film, and the small-sized Laves phase can inhibit the interfacial diffusion of oxidation reaction elements and prevent the inward growth of the oxide film. The element Ce can refine oxide particles and reduce the thickness of the oxide film. CeO2 particles within the oxide film can serve as nucleation sites for the formation of oxide particles from reactive elements, and they also contribute to pinning the oxide film, thereby enhancing its adhesion.

3.
Angew Chem Int Ed Engl ; : e202407779, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789391

We introduce a "solution-processing-transformation" strategy, deploying solvent vapor as scaffolds, to fabricate high-quality hydrogen-bonded organic framework (HOF) membranes. This strategy can overcome the mismatch in processing conditions and crystal growth thermodynamics faced during the facile solution processing of the membrane. The procedure includes the vapor-trigged in-situ transformation of dense amorphous supramolecules to crystalline HOF-16, with HOF-11 as the transient state. The mechanism involves a vapor-activated dissolution-precipitation equilibrium shifting and hydrogen bonding-guided molecule rearrangement, elucidated through combined experimental and theoretical analysis. Upon removal of the molecular scaffolds, the resulting HOF-16 membranes showcase significant improvement in hydrogen separation performance over their amorphous counterparts and previously reported HOF membranes. The method's broad applicability is evidenced by successfully extending it to other substrates and HOF structures. This study provides a fundamental understanding of guest-induced ordered supramolecular assembly and paves the way for the advanced manufacture of high-performance HOF membranes for gas separation processes.

5.
Article En | MEDLINE | ID: mdl-38670815

This study investigated antimicrobial resistance in Salmonella enterica serovar Choleraesuis (S. Choleraesuis) isolates from diseased pigs in Taiwan (2015-2020). Among 272 isolates, florfenicol (96.7%), enrofloxacin (96.3%), doxycycline (91.2%), gentamicin (84.6%), and tiamulin (80.5%) exhibited high resistance. 99.3% of the isolates were resistant to at least one antibiotic, and 97.8% of the isolates were multidrug resistant. This study illustrated that S. Choleraesuis isolates exhibited high resistance to antimicrobials currently used in the Taiwanese swine industry.

6.
Onco Targets Ther ; 17: 243-260, 2024.
Article En | MEDLINE | ID: mdl-38558848

Purpose: This research explored the association between CD163-labeled M2-type macrophages and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) of 38 colorectal cancer (CRC) liver metastases. In addition, we investigated the correlation differences between M2-type macrophages and CAFs in the tumor microenvironments of 38 primary colorectal cancer patients with confirmed liver metastases and 946 colorectal cancer patients, as well as possible mechanisms of action between the two cells. Methods: The Immunohistochemistry (IHC) method was applied to detect the expression levels of M2-type macrophages and CAFs in the tissues of 984 cases of CRC and to analyze the correlation between M2-type macrophages and CAFs in colorectal cancer tissues. The IHC method was also applied to detect the expression levels of M2-type macrophages and CAFs in the liver metastases of 38 cases of CRC in the experimental group and to analyze the correlation between the two cells in liver metastases. Results: 1. M2-type macrophages and CAFs expression were significantly higher in 38 primary colorectal cancer patients compared to 946 controls, and the expression of M2-type macrophages was significantly positively correlated with CAFs. 2. In 984 CRC cases, M2-type macrophages and CAFs expression levels were significantly higher in the cancer tissues than in the paired paracancerous tissues. 3. The expression levels of M2-type macrophages and CAFs in primary colorectal cancer were significantly higher in the experimental group than in colorectal cancer tissues without distant metastasis. Conclusion: M2-type macrophages and CAFs are involved in the development of the colorectal cancer tumor microenvironment, and their interaction influences the initiation and progression of liver metastasis in colorectal cancer. It may provide new clinical ideas for early diagnosis of CRC liver metastases and searching for immune targets.

7.
Front Psychol ; 15: 1359626, 2024.
Article En | MEDLINE | ID: mdl-38605835

As a long-established model of schooling, the boarding system is commonly practiced in countries around the world. Numerous scholars have conducted a great deal of research on the relationship between the boarding school and student development, but the results of the research are quite divergent. In order to clarify the real effects of boarding school on students' development, this study used meta-analysis to quantify 49 (91 effect sizes) experimental or quasi-experimental studies on related topics at home and abroad. The results find that: (1) Overall, boarding school has no significant predictive effect on student development, with a combined effect size of 0.002 (p > 0.05); (2) Specifically, boarding school has a significant positive predictive effect on students' cognitive development (g = 0.248, p < 0.001), a significant negative predictive effect on students' affective and attitudinal development (g = -0.159, p < 0.05), and no significant predictive effect on students' behavioral development (g = -0.115, p > 0.05) and physical development (g = -0.038, p > 0.05); (3) The relationship between the two is moderated by the school stage and the type of boarding school, but not by the instruments; (4) Compared with primary school students, senior high school students and urban boarding students, the negative predictive effect of boarding system on junior middle school students and rural boarding students is more significant. In addition, there are some limitations in the study, such as the limited number of moderator variables included, the results of the study are easily affected by the quality of the included literature, and the dimensionality of the core variable "student development" is not comprehensive enough. In the future, further validation should be conducted through in-depth longitudinal or experimental studies.

8.
Anal Chem ; 96(16): 6373-6380, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38600879

To the deep tissue penetration and ultra-low background, developing near-infrared (NIR) chemiluminescence probes for human health and environmental safety has attracted more and more attention, but it remains a huge challenge. Herein, a novel NIR chemiluminescence (CL) system was rationally designed and developed, utilizing Cr3+-activated ZnGa2O4 (ZGC) nanoparticles as a catalytic luminophore via hypochlorite (NaClO) activation for poisonous target (hydrazine, N2H4) detection. With superior optical performance and unique catalytic structure of ZGC nanoparticles, the fabricated ZGC-NaClO-N2H4 CL system successfully demonstrated excellent NIR emission centered at 700 nm, fast response, and high sensibility (limit of detection down to 0.0126 µM). Further experimental studies and theoretical calculations found the cooperative catalytic chemiluminescence resonance energy transfer mechanism in the ZGC-NaClO-N2H4 system. Remarkably, the ZGC-based NIR CL system was further employed for N2H4 detection in a complicated matrix involving bioimaging and real water samples, thereby opening a new way as a highly reliable and accurate tool in biomedical and environmental monitoring applications.

9.
Opt Express ; 32(6): 10274-10283, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38571243

In this paper, we propose a novel bimodal waveguide based on regional mode engineering (BiMW-RME). Leveraging the orthogonality of the guided modes, the form of patterned SiO2 cladding on the bimodal waveguide can reduce the interaction between the reference mode and the analyte, thereby significantly improving sensitivity. The proposed BiMW-RME sensor experimentally demonstrates a phase sensitivity of 2766 π rad/RIU/cm and a detection limit of 2.44×1-5 RIU. The sensitivity is 2.7 times higher than that of the conventional BiMW sensor on the same SOI platform. The proposed design strategy demonstrates a significant improvement in the sensor's sensitivity, presenting a novel approach to enhancing common-path interferometric sensor performance.

10.
World J Psychiatry ; 14(4): 523-532, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38659603

BACKGROUND: Prior studies have noted great variability in the plasma levels of risperidone (RIS). Plasma concentrations of RIS and its active moiety are highly variable and depend on absorption, metabolism, and other predictors of metabolic dysregulation; however, these factors are poorly understood and the association between metabolic change and change in psychopathology is uncertain. AIM: To ascertain the characteristics of chronic schizophrenic patients treated with RIS, and to assess their relationship with plasma RIS levels. METHODS: This was a descriptive cross-sectional study of 50 patients with a diagnosis of schizophrenic psychosis treated with RIS in a psychiatric service. The plasma concentrations of RIS and its metabolite 9-hydroxyrisperidone were determined by high performance liquid chromatography. The patients' demographic and clinical characteristics, and psychopathologies were assessed, and the associations between clinical variables and plasma levels of RIS were explored. RESULTS: Male patients received higher doses of RIS than female ones, but plasma concentrations of RIS and risperidone + 9-hydroxyrisperidone (active moiety) were higher in female patients. Age and the mean scores of the general psychopathology subscale of the Positive and Negative Syndrome Scale (PANSS) were significantly positively correlated with plasma concentrations of risperidone + 9-hydroxyrisperidone adjusted for weight and dose in all 50 subjects. In male subjects, we found a statistically significant positive correlation between the concentrations of risperidone + 9-hydroxyrisperidone in plasma/(dose × kg) and age, mean PANSS negative subscale scores, mean PANSS general psychopathology subscale scores, and mean PANSS total scores. CONCLUSION: Long-term use of RIS should be closely monitored in older patients and females to minimize the risk of high concentrations which could induce side effects.

11.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649376

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

12.
Exp Mol Med ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38689083

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.

13.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article En | MEDLINE | ID: mdl-38688482

Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.


Actinobacillus Infections , Actinobacillus pleuropneumoniae , Anti-Bacterial Agents , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Swine Diseases , Actinobacillus pleuropneumoniae/drug effects , Actinobacillus pleuropneumoniae/genetics , Taiwan/epidemiology , Anti-Bacterial Agents/pharmacology , Animals , Swine Diseases/microbiology , Swine Diseases/epidemiology , Swine , Actinobacillus Infections/veterinary , Actinobacillus Infections/microbiology , Retrospective Studies , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
14.
Anal Chem ; 96(18): 7240-7247, 2024 May 07.
Article En | MEDLINE | ID: mdl-38661330

In light of deep tissue penetration and ultralow background, near-infrared (NIR) persistent luminescence (PersL) bioprobes have become powerful tools for bioapplications. However, the inhomogeneous signal attenuation may significantly limit its application for precise biosensing owing to tissue absorption and scattering. In this work, a PersL lifetime-based nanoplatform via deep learning was proposed for high-fidelity bioimaging and biosensing in vivo. The persistent luminescence imaging network (PLI-Net), which consisted of a 3D-deep convolutional neural network (3D-CNN) and the PersL imaging system, was logically constructed to accurately extract the lifetime feature from the profile of PersL intensity-based decay images. Significantly, the NIR PersL nanomaterials represented by Zn1+xGa2-2xSnxO4: 0.4 % Cr (ZGSO) were precisely adjusted over their lifetime, enabling the PersL lifetime-based imaging with high-contrast signals. Inspired by the adjustable and reliable PersL lifetime imaging of ZGSO NPs, a proof-of-concept PersL nanoplatform was further developed and showed exceptional analytical performance for hypochlorite detection via a luminescence resonance energy transfer process. Remarkably, on the merits of the dependable and anti-interference PersL lifetimes, this PersL lifetime-based nanoprobe provided highly sensitive and accurate imaging of both endogenous and exogenous hypochlorite. This breakthrough opened up a new way for the development of high-fidelity biosensing in complex matrix systems.


Biosensing Techniques , Deep Learning , Hypochlorous Acid , Biosensing Techniques/methods , Hypochlorous Acid/analysis , Luminescence , Infrared Rays , Humans , Animals , Nanostructures/chemistry , Luminescent Measurements/methods , Mice
15.
Front Oncol ; 14: 1333623, 2024.
Article En | MEDLINE | ID: mdl-38444674

Due to rapid research expansion on dietary factors and development of cancer prevention guidelines, the field of dietary pattern and its relationship to cancer risk has gained more focus. Numerous epidemiology studies have reported associations between Gastric Cancer (GC) and both data-driven posteriori dietary pattern and priori dietary pattern defined by predetermined dietary indexes. As dietary patterns have evolved, a series of patterns based on biological markers has advanced, offering deeper insights into the relationship between diet and the risk of cancer. Although researches on dietary patterns and cancer risk are booming, there is limited body of literature focusing specifically on GC. In this study, we compare the similarities and differences among the specific components of dietary patterns and indices, summarize current state of knowledge regarding dietary patterns related to GC and illustrate their potential mechanisms for GC prevention. In conclusion, we offer suggestions for future research based on the emerging themes within this rapidly evolving field.

16.
Hortic Res ; 11(3): uhae027, 2024 Mar.
Article En | MEDLINE | ID: mdl-38544548

Plant tissue regeneration is critical for genetic transformation and genome editing techniques. During the regeneration process, changes in epigenetic modifications accompany the cell fate transition. However, how allele-specific DNA methylation in two haplotypes contributes to the transcriptional dynamics during regeneration remains elusive. Here we applied an inter-species hybrid poplar (Populus alba × P. glandulosa cv. 84 K) as a system to characterize the DNA methylation landscape during de novo shoot organogenesis at allele level. Both direct and indirect shoot organogenesis showed a reduction in genome-wide DNA methylation. At gene level, non-expressed genes were hypermethylated in comparison with expressed genes. Among the genes exhibiting significant correlations between levels of DNA methylation and gene expression, the expression patterns of 75% of genes were negatively correlated with DNA methylation in the CG context, whereas the correlation patterns in the CHH context were the reverse. The allele-biased DNA methylation was consistent during shoot organogenesis, with fewer than one-thousandth of allele-specific methylation regions shifted. Analysis of allele-specific expression revealed that there were only 1909 genes showing phase-dependent allele-biased expression in the regeneration process, among which the allele pairs with greater differences in transcription factor binding sites at promoter regions exhibited greater differences in allele expression. Our results indicated a relatively independent transcriptional regulation in two subgenomes during shoot organogenesis, which was contributed by cis-acting genomic and epigenomic variations.

18.
J Med Chem ; 67(8): 6738-6748, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38526421

The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.


Antineoplastic Agents , Ferroptosis , Isoquinolines , Triple Negative Breast Neoplasms , Ferroptosis/drug effects , Humans , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Female , Cell Line, Tumor , Ferritins/metabolism , Autophagy/drug effects , Mice , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Mice, Nude
19.
Front Immunol ; 15: 1329009, 2024.
Article En | MEDLINE | ID: mdl-38455045

Objectives: The most frequent cause of kidney damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor for morbidity and mortality. Lactate metabolism and protein lactylation might be related to the development of LN. However, there is still a lack of relative research to prove the hypothesis. Hence, this study was conducted to screen the lactate-related biomarkers for LN and analyze the underlying mechanism. Methods: To identify differentially expressed genes (DEGs) in the training set (GSE32591, GSE127797), we conducted a differential expression analysis (LN samples versus normal samples). Then, module genes were mined using WGCNA concerning LN. The overlapping of DEGs, critical module genes, and lactate-related genes (LRGs) was used to create the lactate-related differentially expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and expression levels, biomarkers were discovered. We also carried out an immune infiltration study based on biomarkers and GSEA. Results: A sum of 1259 DEGs was obtained between LN and normal groups. Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were screened out by the intersection of DEGs, key module genes, and LRGs. Moreover, 8 pivotal genes were acquired via two machine-learning algorithms. Subsequently, 3 biomarkers related to lactate metabolism were obtained, including COQ2, COQ4, and NDUFV1. And these three biomarkers were enriched in pathways 'antigen processing and presentation' and 'NOD-like receptor signaling pathway'. We found that Macrophages M0 and T cells regulatory (Tregs) were associated with these three biomarkers as well. Conclusion: Overall, the results indicated that lactate-related biomarkers COQ2, COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation for the diagnosis and treatment of LN.


Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Lactic Acid , Biomarkers , Signal Transduction
20.
Nano Lett ; 24(13): 3906-3913, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38506264

The intriguing and anomalous optical characteristics of exceptional points (EPs) in optical resonators have attracted significant attention. While EP-related phenomena have been observed by perturbing resonators with off-chip components, implementing EPs fully on-chip remains challenging due to their extreme susceptibility to fabrication errors. In this Letter, we propose a succinct and compact approach to reach EP in an on-chip integrated silicon microring resonator by manipulating the evolution of backscatterings with two nanocylinders of disparate diameters. The theoretical analysis unveils that the fabrication constraints could be significantly relieved by increasing the difference in diameters of the nanocylinders. The evolution from non-EP to EP is traced experimentally through the step-by-step tuning of the angular and radial positions of nanocylinders. The proposed method opens a pathway toward the on-chip high-density integration of non-Hermitian devices.

...