Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
BMC Microbiol ; 24(1): 82, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38461289

BACKGROUND: Extrauterine growth restriction (EUGR) represents a prevalent condition observed in preterm neonates, which poses potential adverse implications for both neonatal development and long-term health outcomes. The manifestation of EUGR has been intricately associated with perturbations in microbial and metabolic profiles. This study aimed to investigate the characteristics of the gut microbial network in early colonizers among preterm neonates with EUGR. METHODS: Twenty-nine preterm infants participated in this study, comprising 14 subjects in the EUGR group and 15 in the normal growth (AGA) group. Meconium (D1) and fecal samples were collected at postnatal day 28 (D28) and 1 month after discharge (M1). Subsequently, total bacterial DNA was extracted and sequenced using the Illumina MiSeq system, targeting the V3-V4 hyper-variable regions of the 16S rRNA gene. RESULTS: The outcomes of principal coordinates analysis (PCoA) and examination of the microbial network structure revealed distinctive developmental trajectories in the gut microbiome during the initial three months of life among preterm neonates with and without EUGR. Significant differences in microbial community were observed at the D1 (P = 0.039) and M1 phases (P = 0.036) between the EUGR and AGA groups, while a comparable microbial community was noted at the D28 phase (P = 0.414). Moreover, relative to the AGA group, the EUGR group exhibited significantly lower relative abundances of bacteria associated with secretion of short-chain fatty acids, including Lactobacillus (P = 0.041) and Parabacteroides (P = 0.033) at the D1 phase, Bifidobacterium at the D28 phase, and genera Dysgonomonas (P = 0.042), Dialister (P = 0.02), Dorea (P = 0.042), and Fusobacterium (P = 0.017) at the M1 phase. CONCLUSION: Overall, the present findings offer crucial important insights into the distinctive gut microbial signatures exhibited by earlier colonizers in preterm neonates with EUGR. Further mechanistic studies are needed to establish whether these differences are the cause or a consequence of EUGR.


Gastrointestinal Microbiome , Infant, Premature , Infant , Infant, Newborn , Humans , Gestational Age , RNA, Ribosomal, 16S/genetics , Birth Weight
2.
Biol Direct ; 18(1): 31, 2023 06 15.
Article En | MEDLINE | ID: mdl-37316926

BACKGROUND: Male factors-caused decline in total fertility has raised significant concern worldwide. LncRNAs have been identified to play various roles in biological systems, including spermatogenesis. This study aimed to explore the role of lncRNA5251 in mouse spermatogenesis. METHODS: The expression of lncRNA5251 was modulated in mouse testes in vivo or spermatogonial stem cells (C18-4 cells) in vitro by shRNA. RESULTS: The sperm motility in two generations mice after modulation of lncRNA5251 (muF0 and muF1) was decreased significantly after overexpression of lncRNA5251. GO enrichment analysis found that knockdown lncRNA5251 increased the expression of genes related to cell junctions, and genes important for spermatogenesis in mouse testes. Meanwhile, overexpressing lncRNA5251 decreased the gene and/or protein expression of important genes for spermatogenesis and immune pathways in mouse testes. In vitro, knockdown lncRNA5251 increased the expression of genes for cell junction, and the protein levels of some cell junction proteins such as CX37, OCLN, JAM1, VCAM1 and CADM2 in C18-4 cells. LncRNA5251 is involved in spermatogenesis by modulation of cell junctions. CONCLUSION: This will provide a theoretical basis for improving male reproductive ability via lncRNA.


RNA, Long Noncoding , Sperm Motility , Male , Animals , Mice , Intercellular Junctions , Fertility , RNA, Long Noncoding/genetics , Spermatogenesis/genetics
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36834506

Liver diseases are associated with many factors, including medicines and alcoholics, which have become a global problem. It is crucial to overcome this problem. Liver diseases always come with inflammatory complications, which might be a potential target to deal with this issue. Alginate oligosaccharides (AOS) have been demonstrated to have many beneficial effects, especially anti-inflammation. In this study, 40 mg/kg body weight (BW) of busulfan was intraperitoneally injected once, and then the mice were dosed with ddH2O or AOS 10 mg/kg BW every day by oral gavage for five weeks. We investigated AOS as a potential no-side-effect and low-cost therapy for liver diseases. For the first time, we discovered that AOS 10 mg/kg recovered liver injury by decreasing the inflammation-related factors. Moreover, AOS 10 mg/kg could improve the blood metabolites related to immune and anti-tumor effects, and thus, ameliorated impaired liver function. The results indicate that AOS may be a potential therapy to deal with liver damage, especially in inflammatory conditions.


Alginates , Busulfan , Mice , Animals , Alginates/pharmacology , Liver , Anti-Inflammatory Agents , Disease Models, Animal , Oligosaccharides/pharmacology
5.
Microbiol Spectr ; 10(5): e0142322, 2022 10 26.
Article En | MEDLINE | ID: mdl-36214691

Young type 2 diabetes (T2D) affects 15% of the population, with a noted increase in cases, and T2D-related male infertility has become a serious issue in recent years. The current study aimed to explore the improvements of alginate oligosaccharide (AOS)-modified gut microbiota on semen quality in T2D. The T2D was established in young mice of 5 weeks of age with a blood glucose level of 21.2 ± 2.2 mmol/L, while blood glucose was 8.7 ± 1.1 mM in control animals. We discovered that fecal microbiota transplantation (FMT) of AOS-improved microbiota (A10-FMT) significantly decreased blood glucose, while FMT of gut microbiota from control animals (Con-FMT) did not. Sperm concentration and motility were decreased in T2D to 10% to 20% of those in the control group, while A10-FMT brought about a recovery of around 5- to 10-fold. A10-FMT significantly increased small intestinal Allobaculum, while it elevated small intestinal and cecal Lactobacillus in some extent, blood butyric acid and derivatives and eicosapentaenoic acid (EPA), and testicular docosahexaenoic acid (DHA), EPA, and testosterone and its derivatives. Furthermore, A10-FMT improved liver functions and systemic antioxidant environments. Most importantly, A10-FMT promoted spermatogenesis through the improvement in the expression of proteins important for spermatogenesis to increase sperm concentration and motility. The underlying mechanisms may be that A10-FMT increased gut-beneficial microbes Lactobacillus and Allobaculum to elevate blood and/or testicular butyric acid, DHA, EPA, and testosterone to promote spermatogenesis and thus to ameliorate sperm concentration and motility. AOS-improved gut microbes could emerge as attractive candidates to treat T2D-diminished semen quality. IMPORTANCE A10-FMT benefits gut microbiota, liver function, and systemic environment via improvement in blood metabolome, consequently to favor the testicular microenvironment to improve spermatogenesis process and to boost T2D-diminished semen quality. We established that AOS-improved gut microbiota may be used to boost T2D-decreased semen quality and metabolic disease-related male subfertility.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Male , Mice , Animals , Testis , Diabetes Mellitus, Type 2/therapy , Semen Analysis , Butyric Acid , Blood Glucose , Eicosapentaenoic Acid , Docosahexaenoic Acids , Antioxidants , Semen , Spermatozoa , Metabolome , Testosterone , Alginates
6.
Res Vet Sci ; 152: 717-725, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36270181

Heat stress effect the physiological functions of body, and reproductive system is one of the most sensitive. It's imperative to find out suitable measures to alleviate harmful effects of heat stress. Baicalin is well-known with its antioxidative property. To examine whether Baicalin could reduce oxidative injures of uterine tissue in heat-stressed mice. The mice were divided into four groups: control (Con), Baicalin (Bai), heat stress (H) and heat stress plus Baicalin (H + Bai). The oxidative damage of uterine tissue was detected by ELISA, H&E staining, tunnel assay and immunohistochemical staining. The protein/mRNA expressions of Keap1/Nrf2 related factors were detected by Western blot or QPCR. The results showed that mice heat-stressed at 41 °C for 2 h induced macroscopic changes, significantly increased MDA content and reduced activities of antioxidant enzymes including SOD, CAT and GSH-Px of the uterine tissue. Compared with Con group, heat stress up-regulated caspase-3 and caspase-9, enhanced the apoptosis of endometrial epithelial and glandular epithelial cells, improved the HO-1 mRNA/protein and NQO1 protein expressions, while down-regulated the mRNA/protein of Keap1. Compared with H group, antioxidant enzyme activities, Nrf2 protein and Nrf2, NQO1 and GCLC mRNA expressions were significantly increased in the H + Bai group. While the uterine epithelial cells apoptosis, MDA contents, caspase-3, caspase-9 and Keap1 protein and HO-1 mRNA expressions were decreased in the H + Bai group of mice compared with that in H group. Briefly, acute heat stress causes oxidative injures and apoptosis of mouse uterine tissue and Baicalin protects uterine tissue from the damages possibly through Keap1/Nrf2 signaling pathway.


Heat Stress Disorders , Rodent Diseases , Mice , Animals , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Signal Transduction , Heat-Shock Response , Heat Stress Disorders/veterinary , RNA, Messenger/metabolism
7.
Brain Res ; 1794: 148042, 2022 11 01.
Article En | MEDLINE | ID: mdl-35952773

OBJECTIVE: Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been proposed as a promising strategy for treating ischemia-related diseases. Herein, we probed into the role of miR-93 delivered by BMSC-EVs in hypoxic-ischemic brain injury (HIBD). METHODS: Neonatal HIBD mouse models and hippocampal neuron models of oxygen glucose deprivation (OGD) were constructed. EVs were isolated from the culture medium of bone marrow MSCs (BMSCs). After co-culture of BMSC-EVs with OGD-exposed hippocampal neurons, the effect of microRNA-93 (miR-93) delivered by BMSC-EVs on OGD-induced hippocampal neurons as well as on HIBD in vivo under transfection of miR-93 mimic or inhibitor was explored. The interaction among miR-93, JMJD3, and p53/KLF2 axis was assessed. RESULTS: BMSC-EVs prevented OGD-induced hippocampal neuron apoptosis and inflammation, which was associated with their transfer of miR-93 into the hippocampal neurons. miR-93 targeted JMJD3 and downregulated its expression, thus inhibiting the OGD-induced hippocampal neuron apoptosis. By regulating the JMJD3/p53/KLF2 axis, miR-93 in BMSC-EVs reduced the OGD-induced hippocampal neuron apoptosis in vitro as well as alleviating HIBD in vivo. CONCLUSIONS: The current study highlighted that miR-93 delivered by BMSC-EVs alleviated HIBD in neonatal mice through the JMJD3-dependent p53/KLF2 axis.


Brain Injuries , Extracellular Vesicles , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cells , MicroRNAs , Animals , Brain Injuries/metabolism , Extracellular Vesicles/metabolism , Glucose/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/therapy , Mesenchymal Stem Cells/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism
8.
Mol Med ; 28(1): 45, 2022 04 25.
Article En | MEDLINE | ID: mdl-35468731

BACKGROUND: Clinical data suggest that male reproductive dysfunction especially infertility is a critical issue for type 1 diabetic patient (T1D) because most of them are at the reproductive age. Gut dysbiosis is involved in T1D related male infertility. However, the improved gut microbiota can be used to boost spermatogenesis and male fertility in T1D remains incompletely understood. METHODS: T1D was established in ICR (CD1) mice with streptozotocin. Alginate oligosaccharide (AOS) improved gut microbiota (fecal microbiota transplantation (FMT) from AOS improved gut microbiota; A10-FMT) was transplanted into the T1D mice by oral administration. Semen quality, gut microbiota, blood metabolism, liver, and spleen tissues were determined to investigate the beneficial effects of A10-FMT on spermatogenesis and underlying mechanisms. RESULTS: We found that A10-FMT significantly decreased blood glucose and glycogen, and increased semen quality in streptozotocin-induced T1D subjects. A10-FMT improved T1D-disturbed gut microbiota, especially the increase in small intestinal lactobacillus, and blood and testicular metabolome to produce n-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to ameliorate spermatogenesis and semen quality. Moreover, A10-FMT can improve spleen and liver functions to strengthen the systemic environment for sperm development. FMT from gut microbiota of control animals (Con-FMT) produced some beneficial effects; however, to a smaller extent. CONCLUSIONS: AOS-improved gut microbiota (specific microbes) may serve as a novel, promising therapeutic approach for the improvement of semen quality and male fertility in T1D patients via gut microbiota-testis axis.


Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Animals , Diabetes Mellitus, Type 1/therapy , Fecal Microbiota Transplantation , Humans , Male , Mice , Mice, Inbred ICR , Semen Analysis , Streptozocin , Testis
9.
Microbiol Spectr ; 10(3): e0002822, 2022 06 29.
Article En | MEDLINE | ID: mdl-35446112

High-fat diet (HFD)-induced obesity is known to be associated with reduced male fertility and decreased semen quality in humans. HFD-related male infertility is a growing issue worldwide, and it is crucial to overcome this problem to ameliorate the distress of infertile couples. For the first time, we discovered that fecal microbiota transplantation (FMT) of alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) ameliorated HFD-decreased semen quality (sperm concentration: 286.1 ± 14.1 versus 217.9 ± 17.4 million/mL; sperm motility: 40.1 ± 0.7% versus 29.0 ± 0.9%), and male fertility (pregnancy rate: 87.4 ± 1.1% versus 70.2 ± 6.1%) by benefiting blood and testicular metabolome. A10-FMT improved HFD-disturbed gut microbiota by increasing gut Bacteroides (colon: 24.9 ± 1.1% versus 8.3 ± 0.6%; cecum: 10.2 ± 0.7% versus 3.6 ± 0.7%) and decreasing Mucispirillum (colon: 0.3 ± 0.1% versus 2.8 ± 0.4%; cecum: 2.3 ± 0.5% versus 6.6 ± 0.7%). A10-FMT benefited gut microbiota to improve liver function by adjusting lipid metabolism to produce n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (blood: 55.5 ± 18.7 versus 20.3 ± 2.4) and docosahexaenoic acid (testis: 121.2 ± 6.2 versus 89.4 ± 6.7), thus ameliorating HFD-impaired testicular microenvironment to rescue spermatogenesis and increase semen quality and fertility. The findings indicated that AOS-improved gut microbiota may be a promising strategy to treat obesity or metabolic issues-related male infertility in the future. IMPORTANCE HFD decreases male fertility via upsetting gut microbiota and transplantation of AOS-benefited gut microbiota (A10-FMT) improves gut microbiota to ameliorate HFD-reduced male fertility. Moreover, A10-FMT improved liver function to benefit the blood metabolome and simultaneously ameliorated the testicular microenvironment to turn the spermatogenesis process on. We demonstrated that AOS-benefited gut microbiota could be applied to treat infertile males with obesity and metabolic issues induced by HFD.


Gastrointestinal Microbiome , Infertility, Male , Diet, High-Fat/adverse effects , Fecal Microbiota Transplantation , Fertility , Humans , Infertility, Male/metabolism , Infertility, Male/therapy , Male , Metabolome , Obesity/therapy , Semen/metabolism , Semen Analysis , Sperm Motility , Testis/metabolism
10.
Theriogenology ; 178: 85-94, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34808561

Heat stress causes oxidative damage and induces excessive cell apoptosis and thus affects the development and/or even causes the death of preimplantation embryos. The effects of baicalin on the developmental competence of heat-stressed mouse embryos were investigated in this experiment. Two-cell embryos were cultured in the presence of baicalin and subjected to heat stress (42 °C for 1 h) at their blastocyst stage followed by continuous culture at 37 °C until examination. The results showed that heat stress (H group) increased reactive oxygen species (ROS) production, apoptosis and even embryo death, along with reductions in both mitochondrial activity and membrane potential (ΔΨm). Both heat stress (H group) and inhibition of the ERK1/2 signaling pathway (U group) led to significantly reduced expression levels of the genes c-fos, AP-1 and ERK2, and the phosphorylation of ERK1/2 and c-Fos, along with significantly increased c-Jun mRNA expression and phosphorylation levels. These negative effects of heat stress on the ERK1/2 signaling pathway were neutralized by baicalin treatment. To explore the signal transduction mechanism of baicalin in improving embryonic tolerance to heat stress, mitochondrial quality and apoptosis rate in the mouse blastocysts were also examined. Baicalin was found to up-regulate the expression of mtDNA and TFAM mRNA, increased mitochondria activity and ΔΨm, and improved the cellular mitochondria quality of mouse blastocysts undergoing heat stress. Moreover, baicalin decreased Bax transcript abundance in blastocyst, along with an increase in the blastocyst hatching rate, which were negatively affected by heat stress. Our findings suggest that baicalin improves the developmental capacity and quality of heat-stressed mouse embryos via a mechanism whereby mitochondrial quality is improved by activating the ERK1/2 signaling pathway and inducing anti-cellular apoptosis.


Embryo Culture Techniques , Thermotolerance , Animals , Apoptosis , Blastocyst/metabolism , Embryo Culture Techniques/veterinary , Embryonic Development , Flavonoids , MAP Kinase Signaling System , Mice , Mitochondria/metabolism , Signal Transduction
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(12): 1120-1127, 2021 Dec.
Article Zh | MEDLINE | ID: mdl-34906298

Objective To investigate the expression of microRNA-146a-3p(miR-146a-3p) and interleukin 17 (IL-17) in peripheral blood CD4+ T cells of neonates with sepsis (NS) and its regulation mechanism. Methods The expression of miR-146a-3p and IL-17 mRNA in CD4+ T cells of 66 children with sepsis (septicemia group), 40 children with infectious diseases (infection group), and 40 healthy newborns (control group) were detected by real-time quantitative PCR, and the level of IL-17 in peripheral blood was detected by ELISA. The targeting effect of the miR-146a-3p on IL-17 was verified by the dual luciferase reporter assay. After isolation of the CD4+ T cells, the expression of miR-146a-3p in CD4+ T cells was promoted or inhibited by miR-146a-3p mimic or miR-146a-3p inhibitor. The proportion of Th17 cells was detected by flow cytometry, and the methylation of miR-146a-3p gene was detected by methylation specific PCR. The changes of Th17 cell proportion and IL-17 expression were observed after adding methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) to CD4+ T cells. Results Compared with those in the infection group and the control group, the expression of miR-146a-3p in peripheral blood CD4+ T cells decreased, while the expression of IL-17 mRNA and the level of IL-17 in peripheral blood increased in septicemia group. Transfection of miR-146a-3p mimic in CD4+ T cells significantly inhibited the activity of wild-type luciferase in the 3'UTR of IL-17. After transfection of miR-146a-3p mimic, the expression of IL-17 mRNA in CD4+ T cells, and the level of IL-17 and the proportion of Th17 cells in the supernatant were significantly decreased. After transfection of miR-146a-3p inhibitor, the expression of IL-17 mRNA, and the level of IL-17 and the proportion of Th17 cells in the supernatant were increased. The methylation rate of miR-146a-3p gene promoter in the peripheral blood of the septicemia group was significantly higher than those of the control group and the infection group. After the addition of 5-Aza-dC in CD4+ T cells, the expression of miR-146a-3p was increased and the expression of IL-17 mRNA was decreased, and in the supernatant, the level of IL-17 was decreased and the proportion of Th17 cells was significantly reduced. Conclusion The expression of miR-146a-3p is down-regulated and the expression of IL-17 is up-regulated in peripheral blood CD4+ T cells of children with neonatal sepsis.


Interleukin-17 , MicroRNAs , Neonatal Sepsis , Th17 Cells , Humans , Infant, Newborn , Interleukin-17/genetics , MicroRNAs/genetics , RNA, Messenger
12.
Theriogenology ; 176: 217-224, 2021 Dec.
Article En | MEDLINE | ID: mdl-34628084

Mixed infection with Escherichia coli and Trueperella pyogenes (T. pyogenes) leads to purulent endometritis, but the underlying molecular mechanisms remain unclear. The aim of this study was to investigate the effect of tanshinone ⅡA (Tan ⅡA) on E. coli and T. pyogenes -induced purulent endometritis and explore the underlying mechanism. First, lipopolysaccharide (LPS) isolated from E. coli and bacteria-free filtrates (BFFs) isolated from T. pyogenes were used to induce a model of bovine endometrial epithelial cell (bEEC) damage in vitro. bEECs were pretreated with or without Tan ⅡA for 2 h, before LPS and BFFs were introduced to induce damage to investigate the protective effect of Tan IIA. Then, the cytolytic activity and inflammatory response in bEECs were examined using CCK-8, LDH and RT-qPCR assays. Furthermore, we confirmed the molecular mechanism by which Tan ⅡA reversed the damaged phenotypes in LPS- and BFFs-induced bEECs via the NF-κB/Snail2 pathway using qPCR and Western blotting. Tan ⅡA significantly decreased the cytolytic activity and inflammatory response in LPS- and BFFs-induced bEECs. In addition, Tan ⅡA reversed the dysregulation of E-cadherin, N-cadherin and vimentin. Moreover, Tan ⅡA significantly inhibited the activation of the NF-κB signaling pathway and decreased the expression level of Snail2, which is the main regulator of the epithelial-mesenchymal transition (EMT). In summary, Tan ⅡA inhibits the LPS-induced EMT and protects bEECs from pyolysin-induced damage by modulating the NF-κB/Snail2 signaling pathway.


Lipopolysaccharides , NF-kappa B , Abietanes , Animals , Bacterial Proteins , Bacterial Toxins , Cattle , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Escherichia coli/metabolism , Female , Hemolysin Proteins , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Signal Transduction
13.
Reprod Domest Anim ; 56(7): 972-982, 2021 Jul.
Article En | MEDLINE | ID: mdl-33866621

Cows are susceptible to pathogenic bacterial infection after pregnancy, leading to inflammation of the endometrium. Aucubin (AU) has been proven to exhibit highly effective anti-inflammatory activity, but its ability to protect against endometritis in dairy cows remains unclear. Therefore, the goal of the present study was to evaluate the protective effect of AU on the LPS-induced inflammatory response of bovine endometrial epithelial cells (BEECs). After pre-treating BEECs with AU (10, 20 and 50 µM) for 6 hr, the cells were stimulated with LPS for 3 hr. Subsequently, BEECs apoptosis was analysed by flow cytometry, the expression of pro-inflammatory cytokine mRNA was detected by qRT-PCR, and changes in NF-κB and Keap1/Nrf2 signalling were analysed by western blotting and immunofluorescence analyses. The results showed that AU can reduce TNF-α, IL-1ß, IL-6, COX-2 and iNOS mRNA expression in BEECs and reduce cell apoptosis. Furthermore, AU significantly reduced the level of NF-κB p65 and IκB phosphorylation and inhibited the nuclear translocation of NF-κB p65. AU also activated the Keap1/Nrf2 pathway, promoting the nuclear transfer of Nrf2 and increasing Keap1, Nrf2, HO-1 and NQO1 mRNA and protein levels. Taken together, these results indicate that AU ameliorates the LPS-induced inflammatory response by inhibiting NF-κB and activating the Keap1/Nrf2 signalling pathway, which has a protective effect on BEECs.


Anti-Inflammatory Agents/pharmacology , Endometrium/drug effects , Iridoid Glucosides/pharmacology , Animals , Apoptosis/drug effects , Cattle , Cells, Cultured , Epithelial Cells , Female , Inflammation/drug therapy , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction
14.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33920993

Polyamines (PAs) dramatically affect root architecture and development, mainly by unknown mechanisms; however, accumulating evidence points to hormone signaling and reactive oxygen species (ROS) as candidate mechanisms. To test this hypothesis, PA levels were modified by progressively reducing ADC1/2 activity and Put levels, and then changes in root meristematic zone (MZ) size, ROS, and auxin and cytokinin (CK) signaling were investigated. Decreasing putrescine resulted in an interesting inverted-U-trend in primary root growth and a similar trend in MZ size, and differential changes in putrescine (Put), spermidine (Spd), and combined spermine (Spm) plus thermospermine (Tspm) levels. At low Put concentrations, ROS accumulation increased coincidently with decreasing MZ size, and treatment with ROS scavenger KI partially rescued this phenotype. Analysis of double AtrbohD/F loss-of-function mutants indicated that NADPH oxidases were not involved in H2O2 accumulation and that elevated ROS levels were due to changes in PA back-conversion, terminal catabolism, PA ROS scavenging, or another pathway. Decreasing Put resulted in a non-linear trend in auxin signaling, whereas CK signaling decreased, re-balancing auxin and CK signaling. Different levels of Put modulated the expression of PIN1 and PIN2 auxin transporters, indicating changes to auxin distribution. These data strongly suggest that PAs modulate MZ size through both hormone signaling and ROS accumulation in Arabidopsis.


Arabidopsis/anatomy & histology , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Meristem/anatomy & histology , Putrescine/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arginine/pharmacology , Hydrogen Peroxide/metabolism , Meristem/drug effects , Models, Biological , Mutation/genetics , NADPH Oxidases/metabolism , Organ Size/drug effects , Phenotype , Potassium Iodide/pharmacology , Signal Transduction/drug effects
15.
J Pharm Pharmacol ; 73(6): 785-795, 2021 Apr 27.
Article En | MEDLINE | ID: mdl-33734387

OBJECTIVES: Clinical endometritis is a common reproductive disorder in mammals that seriously endangers animal health and causes economic losses worldwide. This study aims to use lipopolysaccharide and Trueperella pyogenes exotoxin as modelling reagents (LC) to perfuse the mouse uterus in order to establish a model of clinical endometritis and to investigate the anti-inflammatory and antioxidant effects of chlorogenic acid (CGA). METHODS: In this study, five LC uterine perfusions were selected to model clinical endometritis. The anti-inflammatory and antioxidant effects of CGA were clarified. Through HE staining, proinflammatory cytokines, blood testing, NFκB and Keap1/Nrf2 signalling pathways and other index changes to explore the protection mechanism of CGA. KEY FINDINGS: After CGA treatment, the appearance, inflammatory damage and blood indicators of the mouse uterus returned to normal. Simultaneously, CGA could inhibit the activation of NFκB and reduce the release of inflammatory cytokines; CGA could also activate Keap1/Nrf2, promote the dissociation of Keap1 and Nrf2 and significantly increase the expression of the downstream genes HO-1 and NQO1. CONCLUSIONS: The above results together explain that five LC uterine perfusions can be used to establish a mouse model of clinical endometritis. CGA can treat clinical endometritis by activating Keap1/Nrf2 and inhibiting the NFκB signalling pathway.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Chlorogenic Acid/pharmacology , Endometritis/drug therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects
18.
Food Sci Nutr ; 8(12): 6660-6669, 2020 Dec.
Article En | MEDLINE | ID: mdl-33312549

Codonopsis pilosula is a kind of traditional Chinese medicine used to treat weak spleens, stomach problems, anemia, and fatigue. Polysaccharide is one of main components of Codonopsis pilosula. In this study, response surface methodology (RSM) was used to optimize the extraction parameters of Codonopsis pilosula polysaccharides (CPP) by fermentation. The exaction temperature (°C), yeast liquid volume (2 mg/ml, ml), and time (h) were employed effects. Results indicated that the best extraction conditions were the following: extraction temperature 24.75°C, yeast liquid volume 2.96 ml (5.92 mg), and a fermentation time of 21.03 hr. After purification with DE52 and Sephadex G-100, the molecular structure was determined by ultraviolet-visible (UV) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) (1H and 13C). The monosaccharide composition of CPP1 was determined to be mannose (1.76%), glucose (97.38%), and arabinose (0.76%). CPP1 exhibited high antioxidant activities in scavenging ABTS radicals, ferreous ions, and superoxide ion radicals. Thus, CPP1 could be used as an antioxidant or functional food.

19.
Vet Anim Sci ; 10: 100102, 2020 Dec.
Article En | MEDLINE | ID: mdl-32734024

Metritis is a frequently occurring diseases in postpartum cows and is one of the important reasons for the infertility of dairy cows, accounting for 20-30% of dairy cow diseases and has serious implications for the dairy industry. It has been reported in the literature that the bacterial balance of genital tracts is directly related to the maintenance of physiological function and the development of various diseases of the reproductive system. By analyzing the changes in abundance and diversity of bacteria in the cow uterus from 1 to 35 days postpartum, the objective was to reveal the mechanism of metritis in cows and provide the basis for diagnosis, treatment and prevention of metritis in postpartum dairy cows. Uterine contents were taken from six cows (three healthy and three with metritis) on 1, 7, 14, 21 and 35 days after parturition. DNA genomes extracted from the samples were primed with 515F5'-GTGCCAGCMGCCGCGG-3' and 907R5'-CCGTCAATTCMTTRAGTTT-3' for PCR amplification of the V4+V5 regions of the 16S rDNA genes and construction of a gene library. The sequence of the bacterial structure of the cow uterine contents was analyzed using 16S rDNA high-throughput sequencing technology. A total of 30 samples were tested by PCR, and 29 samples qualified. The results of cluster analysis showed that except for one sample, the number of OTUs in the healthy cows was above 200, while in the cows with metritis, except for three samples, OTUs were below 200. The Chao1 and Shannon indices showed that the abundance of bacteria in the cow uterus was lower than that of healthy cows. Analysis of the relative abundance of bacteria in the cow uterus showed that there were six phyla present, including Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, Actinobacteria and Tenericutes. There were 10 dominant genera in healthy cows, including Bacteroides, Clostridium sensu stricto 1, Escherichia-Shigella, Fusobacterium, Halomonas, Helcococcus, Porphyromonas, Prevotella 6, Rikenellaceae RC9 gut group and Streptococcus. There were nine dominant genera in cows with metritis, including Bacteroides, Caviibacter, Clostridium sensu stricto 1, Falsiporphyromonas, Fusobacterium, Halomonas, Helcococcus, Porphyromonas and Prevotella 7. Phylogenetic tree analysis showed that uterine contents from 29 samples could be separated into two clusters. Eleven samples from the cows with metritis were clustered with one sample from the healthy group, and 13 samples from the healthy cows were clustered together with four samples from the metritis group. Principal co-ordinate analysis showed that the points representing healthy cows and those representing the metritis group were concentrated in two distinct regions, which shows that there were significant differences in the structure evolution between healthy cows and cows with metritis. The above results indicate that bacterial diversity declines with time postpartum in healthy cows and is lower in cows with metritis, with characteristic changes in the relative abundances, including increases in Bacteroidetes and Fusobacteria, decreases in Firmicutes and Proteobacteria, increases in Porphyromonas, Bacteroides and Fusobacterium, and a decrease in Clostridium sensu stricto 1.

20.
J Biochem Mol Toxicol ; 34(12): e22589, 2020 Dec.
Article En | MEDLINE | ID: mdl-32720422

BACKGROUND: The function of miR-20a-5p in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism remains largely unknown. METHODS: C57BL/6J mice and PASMCs were used for constructing pulmonary artery hypertension (PAH) animal and cell models, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was employed to detect miR-20a-5p and ATP-binding cassette subfamily A member 1 (ABCA1) messenger RNA expression. CCK-8, Transwell, and TUNEL experiments were used to determine PASMCs proliferation, migration, and apoptosis. The relationship between miR-20a-5p and ABCA1 was detected by luciferase reporter experiment, Western blot analysis, and qRT-PCR. RESULTS: miR-20a-5p was remarkably elevated in PASMCs of PAH mice and human PASMCs treated by hypoxia, while ABCA1 was remarkably decreased. After transfection of miR-20a-5p mimics, PASMCs proliferation and migration were promoted and PASMCs apoptosis was suppressed. ABCA1 was confirmed to be a target of miR-20a-5p and restoration of ABCA1 reversed the function of miR-20a-5p. CONCLUSION: miR-20a-5p enhances the proliferation and migration of PASMCs to promote the development of PAH via targeting ABCA1.


ATP Binding Cassette Transporter 1/physiology , Cell Movement/physiology , Cell Proliferation/physiology , MicroRNAs/physiology , Muscle, Smooth, Vascular/cytology , Pulmonary Artery/cytology , Animals , Apoptosis/physiology , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL
...