Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 681839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179010

RESUMEN

Comparative epigenomics provides new insights on evolutionary biology in relation with complex interactions between species and their environments. In the present study, we focus on deciphering the conservation and divergence of DNA methylomes during Trichinella evolution. Whole-genome bisulfite sequencing and RNA-seq were performed on the two clades of Trichinella species, in addition to whole-genome sequencing. We demonstrate that methylation patterns of sing-copy orthologous genes (SCOs) of the 12 Trichinella species are host-related and can mirror known phylogenetic relationships. Among these SCOs, we identify a panel of genes exhibiting hyper-/hypo-methylated features in gene-bodies or respective promoters that play pivotal roles in transcriptome regulation. These hyper-/hypo-methylated SCOs are also of functional significance across developmental stages, as they are highly enriched species-specific and stage-specific expressed genes both in Ad and ML stages. We further identify a set of parasitism-related functional genes that exhibit host-related differential methylation and expression among those SCOs, including p53-like transcription factor and Cdc37 that are of functional significance for elucidating differential parasitology between the two clades of Trichinella. This comparative epigenome study can help to decipher the environmental effects on differential adaptation and parasitism of the genus Trichinella.

2.
Commun Biol ; 4(1): 134, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514854

RESUMEN

Genome assemblies provide a powerful basis of comparative multi-omics analyses that offer insight into parasite pathogenicity, host-parasite interactions, and invasion biology. As a unique intracellular nematode, Trichinella consists of two clades, encapsulated and non-encapsulated. Genomic correlation of the distinct differences between the two clades is still unclear. Here, we report an annotated draft reference genome of non-encapsulated Trichinella, T. pseudospiralis, and perform comparative multi-omics analyses with encapsulated T. spiralis. Genome and methylome analyses indicate that, during Trichinella evolution, the two clades of Trichinella exhibit differential expansion and methylation of parasitism-related multi-copy gene families, especially for the DNase II members of the phospholipase D superfamily and Glutathione S-transferases. Further, methylome and transcriptome analyses revealed divergent key excretory/secretory (E/S) genes between the two clades. Among these key E/S genes, TP12446 is significantly more expressed across three life stages in T. pseudospiralis. Overexpression of TP12446 in the mouse C2C12 skeletal muscle cell line could induce inhibition of myotube formation and differentiation, further indicating its key role in parasitism of T. pseudospiralis. This multi-omics study provides a foundation for further elucidation of the mechanism of nurse cell formation and immunoevasion, as well as the identification of pharmacological and diagnostic targets of trichinellosis.


Asunto(s)
Epigenoma , Genes de Helminto , Genoma de Protozoos , Proteínas del Helminto/genética , Músculo Esquelético/parasitología , Trichinella/genética , Triquinelosis/parasitología , Animales , Diferenciación Celular , Línea Celular , Citoesqueleto/parasitología , Citoesqueleto/patología , Evolución Molecular , Genómica , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Ratones , Fibras Musculares Esqueléticas/parasitología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Trichinella/metabolismo , Trichinella/patogenicidad , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Trichinella spiralis/parasitología , Triquinelosis/patología
3.
Sci Adv ; 6(29): eaba1593, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32832621

RESUMEN

Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that ß-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by ß-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts.

4.
Front Plant Sci ; 8: 1508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912794

RESUMEN

Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

5.
Front Plant Sci ; 8: 669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487721

RESUMEN

Quantitative real-time PCR (qRT-PCR) is a reliable and high-throughput technique for gene expression studies, but its accuracy depends on the expression stability of reference genes. To date, several reliable reference gene identifications have been reported in Lilium spp., but none has been obtained for lily tepals at different developmental stages. In this study, ten candidate reference genes were selected and evaluated for their expression stability in Lilium 'Tiny Padhye' during the process of bicolor tepal development. The expression stability of these candidates was evaluated by three software programs (geNorm, NormFinder, and BestKeeper) and the comparative ΔCt method, and comprehensive stability rankings were generated by RefFinder. As a result, TIP41-like family gene (TIP41) and actin (ACT) were the best combination of reference genes for tepals at different developmental stages; TIP41 and F-box family gene (F-box) for tepals under shading treatment; ACT, actin11 (ACT11), and elongation factor 1-α (EF1-α) for different tissues; and ACT, TIP41, and ACT11 for all samples. The selected optimal reference genes were further verified by analyzing the expression levels of flavonoid 3'-hydroxylase (LhF3'H) and anthocyanidin 3-O-glucosyltransfersae (LhUFGT) in tepals at different developmental stages. This study provides useful information for gene expression characterization in lilies under different experimental conditions, and can serve as a basis for similar research in other closely related species.

6.
Front Plant Sci ; 8: 398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28392796

RESUMEN

The bicolor Asiatic hybrid lily cultivar "Tiny Padhye" is an attractive variety because of its unique color pattern. During its bicolor tepal development, the upper tepals undergo a rapid color change from green to white, while the tepal bases change from green to purple. However, the molecular mechanisms underlying these changes remain largely uncharacterized. To systematically investigate the dynamics of the lily bicolor tepal transcriptome during development, we generated 15 RNA-seq libraries from the upper tepals (S2-U) and basal tepals (S1-D, S2-D, S3-D, and S4-D) of Lilium "Tiny Padhye." Utilizing the Illumina platform, a total of 295,787 unigenes were obtained from 713.12 million high-quality paired-end reads. A total of 16,182 unigenes were identified as differentially expressed genes during tepal development. Using Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (61 unigenes), and chlorophyll metabolic pathway (106 unigenes) were identified. Further analyses showed that most anthocyanin biosynthesis genes were transcribed coordinately in the tepal bases, but not in the upper tepals, suggesting that the bicolor trait of "Tiny Padhye" tepals is caused by the transcriptional regulation of anthocyanin biosynthetic genes. Meanwhile, the high expression level of chlorophyll degradation genes and low expression level of chlorophyll biosynthetic genes resulted in the absence of chlorophylls from "Tiny Padhye" tepals after flowering. Transcription factors putatively involved in the anthocyanin biosynthetic pathway and chlorophyll metabolism in lilies were identified using a weighted gene co-expression network analysis and their possible roles in lily bicolor tepal development were discussed. In conclusion, these extensive transcriptome data provide a platform for elucidating the molecular mechanisms of bicolor tepals in lilies and provide a basis for similar research in other closely related species.

7.
Int J Mol Sci ; 17(11)2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-27879624

RESUMEN

Lily tepals have a short lifespan. Once the tepals senesce, the ornamental value of the flower is lost. Some cultivars have attractive purple ovaries and fruits which greatly enhance the ornamental value of Asiatic hybrid lilies. However, little is known about the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. To investigate the transcriptional network that governs purple ovary coloration in Asiatic hybrid lilies, we obtained transcriptome data from green ovaries (S1) and purple ovaries (S2) of Asiatic "Tiny Padhye". Comparative transcriptome analysis revealed 4228 differentially expressed genes. Differential expression analysis revealed that ten unigenes including four CHS genes, one CHI gene, one F3H gene, one F3'H gene, one DFR gene, one UFGT gene, and one 3RT gene were significantly up-regulated in purple ovaries. One MYB gene, LhMYB12-Lat, was identified as a key transcription factor determining the distribution of anthocyanins in Asiatic hybrid lily ovaries. Further qPCR results showed unigenes related to anthocyanin biosynthesis were highly expressed in purple ovaries of three purple-ovaried Asiatic hybrid lilies at stages 2 and 3, while they showed an extremely low level of expression in ovaries of three green-ovaried Asiatic hybrid lilies during all developmental stages. In addition, shading treatment significantly decreased pigment accumulation by suppressing the expression of several unigenes related to anthocyanin biosynthesis in ovaries of Asiatic "Tiny Padhye". Lastly, a total of 15,048 Simple Sequence Repeats (SSRs) were identified in 13,710 sequences, and primer pairs for SSRs were designed. The results could further our understanding of the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lilium/genética , Factores de Transcripción/genética , Transcriptoma , Antocianinas/biosíntesis , Antocianinas/genética , Quimera , China , Color , Flores/anatomía & histología , Flores/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Lilium/anatomía & histología , Lilium/clasificación , Lilium/metabolismo , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Filogenia , Pigmentación/genética , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA